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In managing chronic diseases such as glaucoma, the timing of periodic examinations is crucial, as it may

significantly impact patients’ outcomes. We address the question of when to monitor a glaucoma patient

by integrating a dynamic, stochastic state space system model of disease evolution with novel optimization

approaches to predict the likelihood of progression at any future time. Information about each patient’s

disease state is learned sequentially through a series of noisy medical tests. This information is used to

determine the best Time to Next Test based on each patient’s individual disease trajectory as well as

population information. We develop closed form solutions and study structural properties of our algorithm.

While some have proposed that fixed interval monitoring can be improved upon, our methodology validates

a sophisticated model-based approach to doing so. Based on data from two large-scale, 10+ year clinical

trials, we show that our methods significantly outperform fixed interval schedules and age-based threshold

policies by achieving greater accuracy of identifying progression with fewer examinations. While this work

is motivated by our collaboration with glaucoma specialists, the methodology developed is applicable to a

variety of chronic diseases.

Key words : linear Gaussian systems modeling, controlled observations, stochastic control, disease

monitoring, medical decision making, glaucoma, visual field
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1. Introduction

Glaucoma is a leading cause of visual impairment in the United States and worldwide. It is esti-

mated that over 2.2 million Americans have glaucoma, and the number is expected to grow to

more than 3 million by 2020 (see Friedman et al. (2004), Quigley and Broman (2006)). Glaucoma

is often asymptomatic early in the course of the disease; but if left untreated, it leads to gradual

and progressive loss of vision, ultimately resulting in irreversible blindness. Early identification of
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progression and appropriate treatment can slow or halt the rate of vision loss (see NEI (2011)).

Patients suffering from glaucoma are monitored periodically via noisy quantitative tests to deter-

mine whether the disease is stable or a change in treatment is warranted to slow glaucoma-related

vision loss. There is often a clear tradeoff between monitoring intervals that are too short (lit-

tle information is gained between readings, and there is unnecessary cost and undue discomfort

and/or anxiety for the patients), and too long (the patient’s long term outcomes may be affected

adversely by the delay in detecting disease progression). However, no consensus exists as to the

optimal frequency by which testing should take place, and the ideal frequency of testing can vary

from patient to patient. Multiple factors (including age, family history, race, intraocular pressure

levels, visual field variables, type 2 diabetes mellitus, medical history and genetic factors among

others) may affect the initial onset of the disease and its progression (Tielsch et al. (1990)). With

the movement towards patient-centered models of care (see Bensing (2000)), monitoring guidelines

that incorporate information from the patient’s history are needed.

The standard for glaucoma care is to periodically measure intraocular pressure (IOP) (see Lee

et al. (2007), Musch et al. (2008)) and peripheral vision, as captured by visual field (VF) testing

(see Bengtsson et al. (2009), Diaz-Aleman et al. (2009), McNaught et al. (1995), Zahari et al.

(2006)) to determine if and when an intervention should be performed to slow glaucoma-related

vision loss. The IOP test measures the fluid pressure in the eye. A high IOP is an important risk

factor that can lead to damage of the optic nerve and loss of peripheral vision. The automated VF

test examines the sensitivity of the eye to light stimuli, which is a way of quantifying peripheral

vision loss. Standard automated VF tests provide a quantitative metric on sensitivity to light

throughout the field of vision, as well as a number of global indices comparing the patient’s test

performance to that of a healthy individual with no glaucoma (see Choplin and Edwards (1999)).

Two of the VF performance indices commonly used in clinical practice are mean deviation (MD)

and pattern standard deviation (PSD). Testing noise is associated with both IOP readings and VF

test results. During the VF test, patients can get nervous or tired, which can lead to false positive

and false negative responses. Moreover, patients may experience fixation loss which introduces

error into test results. The VF test can be long, uncomfortable, and burdensome, particularly for

elderly patients (see Gardiner and Demirel (2008)). There is a clear tradeoff understood by the

Glaucoma provider community between monitoring intervals that are either too short (high cost

and unnecessary discomfort) or too long (disease progression goes undetected). Subject to the

judgment and expertise of eye care providers, the frequency with which patients undergo testing

may be as infrequent as every two years (see American Academy of Ophthalmology Glaucoma Panel
2
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(2010)). This frequency depends on a variety of factors including disease severity and stability of

the disease. The expense of conducting these tests can be significant for both the patients and the

overall US healthcare system (see Lee et al. (2006), Rein et al. (2006), Alliance for Aging Research

(2011)).

In addition to using data from perimetry (VF) and intraocular pressure (IOP) to assess for glau-

coma progression, there are also structural tests that assess for pathology to the optic nerve and

retinal nerve fiber layer (e.g., optical coherence tomography (OCT), confocal scanning laser oph-

thalmoscopy, and scanning laser polarimetry). While these tests are becoming increasingly useful

in clinical practice (see Schuman et al. (2012)), unfortunately these tests were not commercially

available when the clinical trials, on which our analysis is based, were carried out. Fortunately, our

research models are scalable and will be able to accommodate data from structural testing in the

future.

1.1. The Disease Monitoring Problem

Motivated by the nature of chronic disease management, this research explores solutions to the

disease monitoring problem. The monitoring problem that we treat in this paper is distinctly dif-

ferent from disease screening and detection. Screening models serve to detect or rule out whether

or not a person has a disease based on disease prevalence and possibly transmission models. The

monitoring problem that we pursue in this paper focuses on the need to perform a series of ongoing

tests over time to promptly identify time epochs at which patients who already have a disease are

experiencing a progression/worsening of the disease. In contrast with screening problems, disease

monitoring involves (1) tracking individual patients over time (rather than population level mod-

eling), (2) gaining new and rich information about an evolving disease state with each test (as

opposed to the yes/no result of a screening test), (3) dynamic decisions of when to take tests based

on the history of information learned about the patient up to the current time point. This class

of problems poses different modeling challenges than the screening problem and opens the way

for new operations research methods that have potential to positively impact longitudinal patient

care.

In this paper we develop models and methods for determining the appropriate timing of mon-

itoring tests based on the control of a linear Gaussian system for disease progression that is cus-

tomizable for each patient. Table 1 summarizes some of the interesting and powerful features of

our modeling approach.

In clinical practice, physicians monitor many chronic diseases by administering a set of quan-

tifiable tests to gain information about a patient’s disease state (such as VF and IOP). One or
3
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Controlled Gaussian State Space Modeling Approach

State Space Scalability High
Stochasticity Separate System Noise and Measurement Noise

Patient Centered Model Feedback Driven; Learns Each Patient’s
Unique Disease Dynamics

Clinician Interactive Clinician Can Tailor Model to Each Patient’s Needs
Solution Approach Closed Form Solution Enables Techniques and Real-Time

Decision Support
Generalizability to Other Diseases High

Table 1 A description of our modeling paradigm and contributions to theory and clinical practice.

two dimensional state spaces are often insufficient to incorporate the richness of data involved in

clinical decision making. This causes a problem for paradigms such as Markov Decision Process

(MDP), which suffer from the curse of dimensionality. While approximate dynamic programming

(ADP) techniques can deal with large state spaces, the need to incorporate noisy observations and

the need for a continuous state makes the problem even more challenging. Continuous state space

models characterized as first order vector difference equations and white multivariate Gaussian

noise inputs can easily accommodate large state spaces, noisy data, and rich data inputs. To cap-

ture a wide range of dynamic behavior, we include in the state not only a test measurement itself

but its most important derivatives (e.g., first, second). The inclusion of variable derivatives in the

state represents a departure from traditional disease modeling. The inclusion of an nth derivative

makes it possible to capture the nth order dynamics in the “position” variable, thereby allowing a

first order model to capture nonlinear behavior in key variables.

As with glaucoma, chronic disease monitoring typically involves both system noise (e.g. stochastic

disease evolution) and measurement noise (e.g. testing errors). Capturing both types of noise is

difficult in some stochastic control paradigms, yet these noise components are critical to capturing

the true dynamics of chronic disease care. Our approach captures correlated multivariate Gaussian

white noise that is present in many medical tests, including VF tests and IOP tests.

Our modeling framework is, to our knowledge, one of the first patient-centered decision support

mechanisms for glaucoma monitoring. The model is feedback-driven, which means that it learns

about each patient’s unique disease evolution dynamics via better state estimation as the clinician

receives more test results, allowing our algorithm to fit the policy to the specific individual’s disease.

Another important feature that is gaining increasing attention in the clinical community is that

two patients can experience the same symptoms very differently, so monitoring schedules should

be tailored to the patient’s experience of the symptoms and not just to the symptoms themselves

(see Fowler et al. (1988)). To avoid a “one size fits all” policy, we allow the clinician to adjust
4
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the algorithm based on three levels of aggressiveness to tailor the monitoring schedule to each

individual patient’s needs. For example, a clinician would likely prescribe a different treatment

approach for an elderly patient with comorbidities versus a young, healthy patient with the same

level of glaucoma.

From an analytical perspective, we develop a closed form solution to a non-linear optimization

over the multivariate Gaussian density describing future disease state. This optimization determines

the monitoring frequency, which enables (1) efficient solutions for real-time clinical decision support

and (2) identification of structural properties that provide important clinical insight into testing

frequency. Our insights and results support recent clinical hypotheses on dynamic monitoring.

Beyond analytical results, clinical relevance and acceptance hinges on rigorous model validation.

We tested our algorithm using data from two large-scale, 10+ year glaucoma clinical trials. We

show that our methods significantly outperform current practice by achieving greater accuracy in

identifying progression with fewer examinations.

Finally, the monitoring problem we address in this manuscript is not unique to glaucoma. Medical

conditions that would benefit most from our approach are: (1) asymptomatic early on in the

disease, (2) effectively treatable to prevent morbidity and mortality if progression is detected early

enough, (3) progressive and require patients to be followed over extended periods of time, (4) can

lead to serious complications (such as blindness, kidney failure, stroke and heart attack), and (5)

have quantifiable measures (such as protein level measurements, blood pressure measurements and

viral load levels). Examples of chronic diseases for which physicians periodically monitor a number

of quantifiable medical tests to capture progression include diabetes mellitus, connective tissue

diseases, kidney diseases, and lupus. Given that chronic diseases affect almost one out of every two

adults in the United States and account for 75% of US healthcare spending (see CDC (2013)), the

proposed methodology has the potential for broad impact on cost as well as on patients’ quality of

care and quality of life.

A high level view of our approach to disease monitoring is depicted in Figure 1. The model begins

with an observation epoch at which the patient is given the required set of medical tests (e.g. VF

and IOP tests). These tests may be perturbed by measurement noise. The noisy measurements are

fed into a Kalman filter (also known as a Kalman-Bucy filter) model to obtain an estimate of the

current disease state as well as a forecast specifying a distribution on the patient’s future disease

state. The forecasted disease state is then fed into a function – we term this the Probability of

Progression (ProP) function – that converts the disease state into a probability that the patient

will have progressed sufficiently to warrant a change in disease management. Finally, the Time to
5
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Next Test (TNT) is given by a function that identifies the earliest time point that the patient’s

forecasted probability of progression will exceed a predetermined progression threshold.

Decision Model with Embedded Kalman Filter

Estimate 
Current  State 

(Eq. 9,10)

Forecast Future States 
and Link to the

Probability of Progression 
(ProP) 

(Eq. 13-15), Section 3.3

Controls/Decisions
(Eq. 18,20)

Intraocular Pressure (IOP)

Visual Field (VF)

Model Output

M
od

el
 In

pu
t

Noisy Tests

Decision Support

Time to Next Test (TNT)

Probability of Progression (ProP)

Figure 1 Decision support framework for chronic disease monitoring.

This paper’s methodological contributions include the analysis of the interaction of the ProP

function with the state space model parameters and the Kalman filter mean and covariance calcu-

lations. The structural properties analyzed generate new insights into the practice of monitoring

patients, some of which have been hypothesized by physicians (see Jansonius (2007)), but have yet

to be mathematically modeled.

The remainder of the paper is organized as follows. Section 2 provides an overview of the relevant

literature. Disease state estimation and forecasting are detailed in Section 3. In Section 4, we discuss

our approach to determine the Time to Next Test(TNT) and the solution and structural properties

of our algorithm. Section 5 applies our models retrospectively to two large-scale, 10+ year glaucoma

clinical trials for validation and demonstrates how our algorithm can deliver improved patient care

with fewer tests compared to other policies that are similar to current practice. We describe how

our algorithms may be integrated into current practice as well as discuss model limitations in

Section 6. Finally, we discuss our results and future directions in Section 7.

2. Current State of Literature

There are three primary areas in the literature relevant to our approach: (1) medical examination

models, (2) machine surveillance, inspection and maintenance, and (3) linear quadratic Gaussian

(LQG) systems with controlled observations (i.e. control of measurement subsystems).

Medical Examination Models: Most research in the field focuses on performing discrete screen-

ings to detect the first incidence of a disease, rather than monitoring an ongoing chronic disease.

Denton et al. (2011) provides insight into some of the open challenges in this area, including those
6
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that we address here. The two main approaches are either cost-based or assume a fixed number

of examinations. Such models have been developed for cancer and diabetes mellitus among other

chronic diseases (see Lincoln and Weiss (1964), Michaelson et al. (1999), Shwartz (1978), Baker

(1998), Maillart et al. (2008), Rauner et al. (2010), Zelen (1993), Özekici and Pliska (1991), Hanin

and Yakovlev (2001), Kirch and Klein (1974), Day and Walter (1984), Chhatwal et al. (2010)).

The recent work of Ayer et al. (2012) begins to explore personalizing testing schedules incorpo-

rating risk factors and history of tests similarly to our work. Lee and Wu (2009) develop disease

classification and prediction approaches using math programming.

A second related research area involves monitoring and treatment decisions of an ongoing condi-

tion. Work has been done with regard to the timing of initial treatment (see Shechter et al. (2008),

Denton et al. (2009), Shechter et al. (2010)). The above research, however, does not incorporate

multi-dimensional state spaces in feedback driven control loops to monitor patient-specific disease

progression. For example, models have been developed for the treatment of HIV, diabetes, organ

transplantation, cancer, and management of drug therapy dosages (see D’Amato et al. (2000),

Lee et al. (2008), Alagoz et al. (2004), Lavieri et al. (2012), Hu et al. (1996)). These approaches,

however, only model a low dimensional health state with varying levels of degradation. In addi-

tion, existing models that consider frequency of monitoring decisions do not incorporate dynamic

updating of information, rather making the assumption that all patients progress according to pop-

ulation statistics-driven transition functions. This is insufficient for the complex disease modeling

we pursue in this work.

There is little work that seeks to model the complexities of a given disease by considering multiple

interacting physiological indicators available. By using Gaussian state space models for disease

progression and monitoring, our work is able to capture multi-dimensional, continuous state space

models with correlated measurement noise in a tractable manner. This approach increases the

scope of monitoring problems that can be solved and opens up the possibility of capturing complex

and evolving diseases that are measured using a variety of different tests.

Machine Surveillance, Inspection and Maintenance: Extensive literature surveys of machine

maintenance, inspection and surveillance include Pierskalla and Voelker (1976), Sherif and Smith

(1981), Barlow et al. (1996), and Wang (2002). These surveys propose that the literature can be

divided into 5 primary modeling approaches: (1) Age Replacement Models, (2) Block Replacement

Models, (3) Delay-time Models for inspection, (4) Damage Models, (5) Deterioration Models.

Model types (3), (4), and (5) are particularly relevant to the monitoring of chronic diseases.

Damage models determine the properties of the failure time (e.g. disease progression), but do not
7

Page 18 of 62Operations Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

consider the effect of inspections (see Nakagawa and Osaki (1974), Morey (1966)). Deterioration

and delay-time models assume that machine degradation can only be observed by inspecting the

system. Inspection carries cost c1, the current state of degradation carries a cost of c2 and there is

typically a cost for replacement and/or repair proportional to the state of deterioration (see Luss

(1976), Yeh (1997), Ohnishi et al. (1986a), Mine and Kawai (1975), Derman and Sacks (1960),

Bloch-Mercier (2002)), or the length of time a failure goes undetected (see Keller (1974), Kander

(1978), Munford and Shahani (1972), Donelson (1977), Luss (1983), Savage (1962), Barlow et al.

(1963)). These models, however, consider a one-dimensional state space with Markovian or semi-

Markovian system dynamics and perfect observations, which is insufficient for our application.

In non-Markovian surveillance and inspection models (see Antelman and Savage (1965), Nak-

agawa and Yasui (1980), Kander and Raviv (1974), Chitgopekar (1974)), the state space is still

one-dimensional and the observations are assumed to be perfect. Papers that consider noisy or

uncertain observations include Savage (1964), Noonan and Fain (1962), Rosenfield (1976), Eckles

(1968), Ohnishi et al. (1986b). Again, the state space is one-dimensional and, while some mod-

els consider rich noise components, most consider only simple noise. Chronic disease progression

monitoring requires a multi-dimensional state space with both observation noise and correlated

system noise. By incorporating these features, this paper expands the modeling approaches in

inspection/surveillance and deterioration/damage modeling.

Linear Gaussian Systems: Linear Gaussian systems and linear quadratic Gaussian control

(LQG) have been used in many different applications in dynamical systems modeling, estimation,

and control theory. Our models, however, focus on systems without fixed observation intervals,

which represents a major departure from the foundational models. Sensor scheduling research does

investigate the question of how frequently, for a given set of available sensors, one should take mea-

surements and from which sensors. However, our decisions on when to test and whether or not to

declare progression fall outside the class of quadratic objective functions used in sensor scheduling.

Work in sensor scheduling includes Mehra (1976), Oshman (1994), Wu and Arapostathis (2008);

however, this literature typically assumes that a measurement is taken every period (though from

different sensors). Control of measurement subsystems (see Meier III et al. (1967), Athans (1972),

Lafortune (1985)) is the area most closely related to ours. This work considers the problem of

whether or not to take a measurement in each period. There is a cost for taking a measurement,

a cost for system control, and a cost associated with each system state at every time instance.

Our work extends the LQG control theory by formulating and analyzing the class of monitoring

problems in combination with user input and employing non-standard optimization approaches

incorporating potentially complex disease progression functions.
8
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3. State Space Modeling of Progression

We develop state space models for estimating and forecasting a patient’s disease trajectory. In

Sec. 3.1 we present our modeling approach, which is then applied in Sec. 3.2 to glaucoma patients

from two major clinical trials, the Collaborative Initial Glaucoma Treatment Study (CIGTS) and

Advanced Glaucoma Intervention Study (AGIS). Finally, Sec. 3.3 briefly describes the nature of

the ProP estimator that converts a modeled disease state into a Probability of Progression. This

component links the forecasting mechanisms developed in this section with the control on testing

intervals presented in Sec. 4, which is illustrated in Fig. 1.

3.1. Gaussian Continuous State Models of Disease Measurement Dynamics

Our vector continuous state space models are in the class of first order stochastic difference equa-

tions with correlated Gaussian noise inputs such that the noise is independent from one period

to the next (i.e., white). These first order models are adequate for a surprisingly general class of

systems, especially if state augmentation is used to linearize a nonlinear model by including the

derivatives of key variables in the state space (see Bertsekas (1987, 2000a,b)). This class of sys-

tems allows us to develop correlated multivariate Gaussian noise models for both (1) process noise,

which can approximate the effect of unmodeled dynamics, and (2) measurement noise in medical

test measurements. Our system model underlying the Kalman filter is comprised of a continuous,

vector patient disease state and the system disease dynamics.

3.1.1. Patient Disease State. Current evidence indicates that a primary indicator of glau-

coma progression is worsening of the Visual Field, and that Intraocular Pressure (IOP) is a critical

risk factor for future progression. In our model, we consider an nine-dimensional column vector to

model the state of the patient, αt:

αt =
[
MD, MD′, MD′′, PSD, PSD′, PSD′′, IOP, IOP ′, IOP ′′

]′
, (1)

where MD (mean deviation) and PSD (pattern standard deviation) refer to two global measures of

performance from the visual field test. Additional measures of performance from that test might

be used contingent on data availability. Similarly, IOP represents the intraocular pressure mea-

surement. MD′ and MD′′ refer to the first and second derivatives of the MD measure with respect

to time: velocity and acceleration. Similar derivatives are taken of the PSD and IOP measures.

Continuous time data on MD, PSD and IOP measurements is not available because readings are

at discrete time points, so we estimate the derivatives from the discrete time data. Given mea-

surements x1 at time t1, x2 at time t2, and x3 at time t3, the first derivative is estimated via
9
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(x2−x1)/(t2− t1) and the second derivative is estimated via (x2−x1)/(t2−t1)−(x3−x2)/(t3−t2)

(t3−t2)
. From the

doctor’s perspective, the visual field machine or IT system can estimate these derivatives from the

history of observations. This estimate can then be combined with the underlying system dynamics

that capture the derivative changes in the dynamical system model.

3.1.2. A Kalman Filter Model for the Disease Measurements Our discrete-time dis-

ease model is recursive. In each period, there is a system transition and also a measurement of

the system that can be taken by the observer/controller. The difference equation formulation of

these system dynamics consists of a state transition equation and a measurement equation. The

transition equation defines how the disease is progressing from one period to the next and the

measurement equation describes the system’s observation of disease state through medical testing.

As an anchor for the recursive system equations, there is an initial state that is assumed prior to

any observations, based on population characteristics found in the CIGTS and AGIS clinical trials.

State Transition Equation. In each period, t, the system moves to a new state at t+1 according

to a state transition matrix T and a vector Gaussian white noise input η. The Gaussian noise

represents unmodeled disease process noise. The recursive transition equation is given by

αt =Tαt−1 + η t= 1, . . . ,N, (2)

where η is a Gaussian random vector with E[η] = 0 and Var[η] = Q . Clearly the system state, αt,

is also a Gaussian random variable for all t since it is the result of a linear combination of Gaussian

random variables.

Measurement Equation. In the measurement equation, zt denotes the observation vector; i.e.

the outcomes of the series of tests that are performed at each glaucoma patient’s visit. Z is the

matrix that models how components of the true state, αt, are observed. ε is the Gaussian noise

component that denotes the test noise described in Sec. 1. The measurement equation has the form

zt = Zαt + ε t= 1, . . . ,N, (3)

where ε is a Gaussian random variable with E[ε] = 0 and Var[ε] = H. Again, clearly the observation

zt is a Gaussian random variable for all t.

Finally, let the initial state be a Gaussian random vector, X0, with E[X0] = α̂0 and covariance

matrix Var[X0] = Σ̂0.
10
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3.1.3. State Estimation and Prediction with the Kalman Filter. For the above model,

the Kalman filter optimally estimates the mean and covariance parameters that completely char-

acterize the state of the linear Gaussian system based on noisy observations. In each period, the

Kalman filter performs two steps to generate state estimates: prediction and update. In the predic-

tion step, the linear state transition model is used to estimate the mean and covariance of the next

state. In the update step, new observations are used to optimally correct the model’s prediction so

as to minimize the mean squared error of the estimate: E[|αt− α̂t|2]. Using the notation developed

in Sec. 3.1.2, the Kalman filter approach (see Kalman et al. (1960)) is summarized below.

Prediction Step. The prediction step takes the most recent mean and covariance estimate with

information up to time t, α̂t|t and Σ̂t|t, and uses the system dynamics model from Eq. 2 to predict

the future state as

α̂t+1|t =Tα̂t|t (4)

Σ̂t+1|t = TΣ̂t|tT
′+Q, (5)

where α̂t+1|t and Σ̂t+1|t are the predicted mean and covariance at time t+ 1 given observations up

to time t. Also note that the prime symbol, ′, represents the matrix transpose.

Update Step. After the prediction step, a new observation, zt+1, is obtained and the error between

the prediction and the observation is used to calculate the optimal new state estimate. In this step,

first the measurement residual, ỹt+1, and the predicted covariance of the measurement, St+1, are

calculated as

ỹt+1 = zt+1−Zα̂t+1|t (6)

St+1 =ZΣ̂t+1|tZ
′+H. (7)

The optimal Kalman gain, Kt+1, is the solution to an optimization that minimizes the trace of

the estimated covariance matrix (and thereby minimizes the mean squared error of the estimate).

The optimal Kalman gain is given by

Kt+1 = Σ̂t+1|tZ
′ ·S−1

t+1. (8)

The optimal Kalman gain from Eq. 8 is used to calculate the optimal new state estimate, α̂t+1|t+1

and Σ̂t+1|t+1, for the gaussian state random variable as

α̂t+1|t+1 = α̂t+1|t +Kt+1 · ỹt+1 (9)

Σ̂t+1|t+1 = (I −Kt+1Z) Σ̂t+1|t, (10)
11
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where I is the identity matrix. Eq.’s 9 and 10 are the key equations that define the recursive

Kalman estimator and will be relied upon in subsequent analysis.

Multi-Period Prediction. In our application, the condition of each patient varies from one

patient to another, so the optimal time interval between tests will vary from one measurement to

the next depending on the patient’s measurement history. Therefore, our approach must predict

sufficiently many periods ahead before applying the update step. By eliminating the update step for

periods in which no observation is performed, the transition equation yields the `-step prediction

equation (i.e. predicting ` periods into the future) as

α̂t+`|t =T`α̂t|t (11)

Σ̂t+`|t = T`Σ̂t|t(T
`)′+

`−1∑
j=0

TjQTj ′, (12)

where αt+` is the Gaussian state variable at time t+` given that observations are available through

time t (i.e., the observation history). The first element of the sum represents the multi-period state

transition and the second element of the sum in Eq. 12 represents the multi-period process noise

accumulation.

3.2. Application to Two 10+ Year Clinical Trial Data Sets

In Sections 3.1.1, 3.1.2, and 3.1.3 we presented the theoretical framework for modeling disease

progression in glaucoma patients. To validate our approach, we used real patient data from two

10+ year large randomized clinical trials of glaucoma patients: the Collaborative Initial Glaucoma

Treatment Study (CIGTS) and the Advanced Glaucoma Intervention Study (AGIS). CIGTS is a

randomized clinical trial that followed 607 participants with newly-diagnosed, mild to moderate

glaucoma for up to 10 years. During the course of the trial, visual field and IOP readings were taken

every 6 months. Participants were initially randomized to one of two treatment arms: medical or

trabeculectomy (a surgical intervention). Participants who did not respond well to their treatment

arm were given an additional treatment of Argon Laser Trabeculoplasty (ALT).

AGIS followed 591 participants with advanced glaucoma for up to 11 years. Similar to CIGTS,

measurements of VF and IOP for each participant were taken every 6 months. AGIS participants

were randomized to one of two treatment sequences: one sequence began with ALT, and the other

began with trabeculectomy. Participants responding poorly to their initial treatment received the

other treatment next. In both studies, for each participant a single eye was studied. The Study Eye

was assigned prior to randomization based on the eligibility status of the eye. If both eyes were

eligible, it was assigned based on the treating physician’s selection.
12
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We combined the longitudinal data of the two randomized clinical trials into one data set. For

our case study, we focused on participants from the clinical trials who were treated with medicine

or ALT. Participants included in our study were randomly divided into equal size training and

testing sets in a manner that maintained the original ratio between progressing and non-progressing

patients, as well as the mixture of mild, moderate, and advanced glaucoma patients and patients

coming from each trial in both the training and testing sets. The time step for the linear Gaussian

system was set to 6 months to match the time step of the data. Though the time step can be chosen

to be any arbitrary length, we chose 6 months to avoid making assumptions about progression

at points in time where data were not available. In other words, one transition moves the system

forward in time 6 months. The training data were used to calibrate the model, employing the

Expectation Maximization (EM) algorithm for parameter estimation of the Kalman filter and its

implementation in Matlab (see Ghahramani and Hinton (1996), Digalakis et al. (1993), Murphy

(1998)) to find the matrices T (linear system dynamics), Q (process noise covariance), Z (the

observation matrix that allows some or all of the states to be measured in a possibly altered form),

H (measurement noise covariance), α̂0 (initial state mean), and Σ̂0 (initial state covariance). While

the initial state, (α̂0, Σ̂0), is based on the population statistics, in practice when a new patient

establishes with a glaucoma specialist (or is newly diagnosed), several baseline measurements are

taken for MD, PSD and IOP to assess the state of the disease. These baseline readings were then

input as observations to the Kalman filter. Thus the initial state is used only as an initial condition

for the recursion which is then immediately tailored to the individual patient through several (often

2+) baseline readings before any testing schedules are generated. This allows the system to adjust

to the individual patient (and away from the population mean) before results are generated. In our

tests on the clinical trials, distance from the initial state did not significantly affect future state

forecasts because the baseline readings were sufficient for the model to be tailored to the individual

patient.

EM Algorithm. The EM algorithm has two steps that are performed iteratively until the algo-

rithm converges: the E step and the M step. The system is initialized with an estimate of the

matrices and vectors we want to fit. In the E step, the Kalman filter is run forward and backward

(known as Kalman smoothing) on the data to provide the best estimate of the true system state

at each time t given all the data available, including data coming before and after time t in the

sequence. This yields the estimated Gaussian distribution for each time period. In the M step,

the expected log likelihood of the set of observations is maximized by taking matrix derivatives
13
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with respect to the parameters to be estimated and setting them equal to zero (with the expecta-

tion taken over the Gaussian distribution from the E step). The parameters output from the EM

algorithm for a particular training data set are given in Appendix B.

3.2.1. Model Fit and Normality Our modeling approach enables us to efficiently capture

system and measurement noise, but require that we model our system as a set of stochastic differ-

ence (or differential) equations that are linear and have multivariate, correlated Gaussian noise. To

ensure the robustness of the modeling approach and appropriateness in modeling glaucoma disease

progression, we performed a sensitivity analysis. First, we randomly generated 25 training data sets

(with the complement of training used for testing), while maintaining the proportion of different

types of patients seen in the general population. Then, we parameterized the Kalman filter on each

one of the 25 training data sets (using the EM algorithm) and tested it on the remaining test data.

The box plots in Fig. 2 are a result of these 25 separate parameterizations and runs of the Kalman

filter. It can be seen from the tight box plots in Fig. 2 that the model is quite robust to the patient

data used to parameterize it.

After parameterizing the Kalman filter, for each participant in the test set, we used the Kalman

filter model to predict MD values (MD being the most significant variable) for five years into the

future for most patients. The prediction error (i.e., the predicted mean state minus the actual

observation) was computed for each of the 25 training/test data set combinations mentioned above.

The estimated average error and error standard deviation are given in the left and right plots,

respectively, of Fig. 2. These box and whisker plots show that our model for state prediction

has very little bias. The red line is the median, the upper and lower edges of the box show the

upper and lower quartiles of the data, and the whiskers show the maximum and minimum values

observed. The fact that the boxes are very thin shows that the model is robust to the data used

to parameterize the filter. Equivalent results have been obtained for other state variables.

(a) Mean MD prediction error (b) Standard deviation of prediction error

Figure 2 Kalman filter prediction error versus number of 6 month long periods into the future.
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While we acknowledge that it is an approximation to model the process noise and state obser-

vation noise as both multivariate Gaussian random variables, numerical testing revealed that the

Gaussian model is a reasonable fit. We analyzed the Kalman Filter residuals/innovations (the error

between next step prediction and the actual observation) to test whether or not the system model

is effective, evidenced by the residuals possessing a Gaussian distribution. For each element of the

residual vector, the p-values of t-tests for unbiasedness (supporting the linearity assumption) as

well as for the Shapiro test for normality support the case that these are normally distributed with

zero mean. Quantile-Quantile (QQ) plots were used to compare the quantiles from the empirical

distribution of the actual data to the quantiles of the hypothesized Gaussian distribution. For MD,

PSD, and IOP, respectively, we have a match of the data to a Gaussian distribution for values

within 2.5, 2.8, and 1.9 standard deviations of the mean (which is 95% of outcomes even in the

worst case of IOP). With this good model fit and almost no bias (see Fig. 2), we are confident the

model is sufficiently capturing critical system dynamics.

3.3. Progression Models: Glaucoma ProP Function

Our next step is to match the Kalman Filter variables with treatment decisions. In glaucoma, as

is the case with various chronic diseases, clinicians often face the challenge of interpreting multidi-

mensional data to make decisions of how best to treat their patients (see Katz (1999)). This can be

difficult in practice because the amount of data is so large and is processed mentally without the

aid of any similar decision support system. Identifying and properly utilizing this multidimensional

space of information over a history of observations is the purpose of the Probability of Progression

(ProP) function. Specifically, the ProP function, f , maps the state space of physiological indicators,

S, to a measure of disease progression in [0,1]: probability of progression.

In collaboration with subject matter experts and leveraging medical literature (e.g. Hodapp et al.

(1993)), we developed a glaucoma progression definition using the physiological indicators. As there

is no gold standard to measure glaucoma progression, our work has focused on identifying drops of

3 MD with respect to baseline that are validated in at least one instance into the future (see Musch

et al. (2009)). This definition has been compared against other progression definitions (such as

Nouri-Mahdavi et al. (2004) and Hodapp-Anderson-Parrish from Hodapp et al. (1993)) on a subset

of patients for which sufficient data was available. Other definitions may be further explored in

the future, contingent on data availability. All glaucoma progression instances were validated using

the longitudinal data. After extensive testing of many approaches, we chose a logistic function,

f(x) where x is the disease state vector, to assess the probability of glaucoma progression for any

patient at any given time:

f(x) =
1

1 + e−w(x)
, (13)
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w(x) = b+ax, (14)

where w(x) is a linear function of key risk factors, including MD, PSD and IOP measures and

can include other important factors such as structural changes to the optic nerve, age, race, family

history, medical history and genetic factors among others. The regression coefficients are captured

in the progression vector, a, which represents the n-dimensional direction of steepest ascent toward

progression.

We further consulted with glaucoma specialists and the literature (e.g. Nouri-Mahdavi et al.

(2004), De Moraes et al. (2011)) to determine appropriate risk factors to consider in developing

the ProP function. For our case study, we used generalized estimating equations with a logit link

function on the training set of study participants to parameterize the ProP function. Starting

with sex, age, race, baseline MD, MD, MD velocity, MD acceleration, baseline PSD, PSD, PSD

velocity, PSD acceleration, baseline IOP, IOP, IOP velocity, and IOP acceleration as our initial

set of covariates, backward variable selection was performed with a significance level of 0.05 to

determine the final set of covariates for our case study. In addition, for a subset of patients from

the CIGTS trial, we also had available additional factors such as: cardiac or vascular disease,

disc hemorrhage, Open Angle Glaucoma (OAG) diagnosis of both eyes (study eye and fellow eye)

at baseline (i.e. none, primary open angle glaucoma, pseudoexfoliation, pigmentary, other). After

performing forward and backwards elimination on that subset of patients, we further concluded

that none of the additional variables made a significant difference in our predictions. While some

of the variables were significant in univariate analysis, they did not change our estimated Area

Under the ROC Curve (AUC) when we incorporated them into the models. Thus, these additional

factors were not included in the ProP logistic regression function.

Unfortunately, we could not include information on the retinal nerve fiber layer as captured using

optical coherence tomography because the technology to gather such clinical data was not available

at the time the CIGTS and AGIS trials were carried out. Genetic factors were also not available to

us from the clinical trials used for validation of our models. Incorporation of such factors, among

others, may improve the accuracy of the models presented. The factors found to be relevant in

our study were MD position (MD), velocity (MDV) and acceleration (MDA), PSD baseline value

(PSDB), PSD position (PSD) and age. The coefficients we used are given as

w(x) =− 6.0035− 0.0568 ·MD− 4.0544 ·MDV − 1.1832 ·MDA− 0.1615 ·PSDB+ 0.1536 ·PSD+

0.0255 · age, (15)
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with a full description of the model and approach given in Schell et al. (2013). The AUC (obtained

from the Mann-Whitney U statistic) for the ProP function applied to the testing set was 0.919,

which is clinically considered to be very good. Additional covariates (including structural changes to

the optic nerve, diabetes mellitus, medical history and genetic factors) may improve our estimations

and should be considered in future implementations of our models. While IOP and its derivatives

were not used as a factor in the ProP function (Eq. 15), it was found to be important in the

Kalman filter modeling of test measurement evolution because IOP interacts with VF and PSD.

A thorough treatment of the key factors involved in glaucoma progression can be found in Musch

et al. (2009) and Schell et al. (2013).

4. Time to Next Test (TNT)
The idea behind our approach is to balance testing frequently to catch progression early against the

cost, discomfort, and inconvenience associated with testing. We capture this tradeoff by delaying

testing until the point in time at which the model indicates that we can no longer be statistically

“confident” that the patient has not progressed. Specifically, to determine the Time to Next Test

(TNT), we forecast the patient disease state trajectory into the future until the ProP function hits

an optimized threshold indicating sufficient likelihood of progression for a test to be performed.

The TNT interval of time to the next test is therefore determined by the length of time it takes

for the disease state forecast to reach the optimized progression threshold. We develop a stochastic

Point of Maximum Progression (POMP) function that maximizes the deterministic ProP function

over the n-dimensional Gaussian density of the forecasted state. This yields the “worst case” point,

or the point of maximum progression, within a confidence region around the mean state vector; a

conservative estimate of the patient’s probability of progression. Experimental testing is used to

tune the parameters controlling the size of the confidence region (ρ) and the optimized progression

threshold (τ) to capture the tradeoff between catching progression and cost of testing mentioned

above.

Fig. 3 is a conceptual representation of this approach for a 3-dimensional state space. In this

figure t is the current period and the ellipsoid at period t represents the 100ρ% confidence region

around the state estimate. As we forecast the patients disease state further into the future (e.g.

periods t+1, t+2, . . .), the center of the confidence region (i.e. the forecasted mean state) moves in

accordance with the disease dynamics (i.e. transition matrix T). In addition, the confidence region

expands as the covariance around the forecasted mean grows the further into the future the state

is predicted. The time of the next test occurs at the first period in which the forecasted confidence

region intersects or exceeds the progression threshold (an n-dimensional hyperplane), illustrated

by the plane in Fig. 3; in this case period t+ 4.
17
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Figure 3 Depiction of the confidence region point of maximum progression time to next test approach, POMP

TNT

Our model has two parameters, ρ and τ , that control how aggressively to test a given patient.

τ sets a threshold on the probability of progression (the plane in Fig. 3). At the same time that

the probability that a patient has progressed exceeds τ the algorithm recommends taking another

test at that time. Smaller values of τ indicate a lower tolerance for missing progression because

the patient reaches the threshold more quickly, generating more frequent testing. ρ adjusts the size

of the confidence region around the predicted mean disease state (the ball in Fig. 3), with larger

values generating more frequent tests. For clinician usability, we present in Sec.’s 5.2 and 5.3 an

intuitive 3-level aggressiveness scale (low, medium, high) to be selected by clinicians that set ρ and

τ to realize the desired monitoring aggressiveness.

In practice, if clinicians receive a suspicious/unreliable test result it is common to schedule a

follow-up test in the near future to confirm the results, because the test results may not be infor-

mative and thereby would be ignored if unconfirmed. Our optimal estimation and TNT scheduling

algorithm support this clinical process in the following ways. First, the filtered ProP reading

obtained immediately upon receiving the exam results would give the clinician an indication of

whether there is concern regarding the patient’s condition. The Kalman filtering helps to reduce

the noise in the testing giving the clinician a clearer picture of the patient’s status. If the clinician

feels the VF exam results are suspicious/unreliable (either because of the filtered ProP estimate

or because of some of the error checking in the Humphrey Visual Field Analyzer), the clinician

will schedule a subsequent (follow-up) test for the near future to either confirm or invalidate the

suspicious/unreliable test. This test will be done off-line, and when the clinician is satisfied, the

non-suspicious result will be added to the Kalman filter algorithm and used to calculate the time

of the next regular test. Alternatively, the average (or weighted average) of the results might be

included in the algorithm. In the case of the two clinical trial studies on which we tested our algo-

rithm, only non-suspicious results were included, which provides the same results as the approach

we describe for using this system in clinical practice.
18
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4.1. Point of Maximum Progression (POMP) Time to Next Test (TNT) Approach

In this section we develop a closed form solution to the optimization of the ProP function over

the Gaussian prediction region. Mathematically we can define the 100ρ% prediction region for the

Gaussian random variable with mean α̂t+`|t and covariance Σ̂t+`|t for ` periods into the future as

Dρ(α̂t+`|t, Σ̂t+`|t) = {x : (x− α̂t+`|t)′Σ̂−1
t+`|t(x− α̂t+`|t)≤ χ

2(1− ρ,n)}, (16)

where α̂t and Σ̂t represent our current estimate of the mean and covariance of the disease state at

time t (see Chew (1966)). Also, χ2(1−ρ,n) is the 1−ρ quantile of the chi-square distribution with

n degrees of freedom.

The goal is to associate the state estimate with ProP by using function f . A logical and conser-

vative approach is to find the maximum value of the ProP function, f , over the prediction region,

Dρ(α̂t+`|t, Σ̂t+`|t). Given the current state estimate, α̂t|t, Σ̂t|t, the stochastic Point of Maximum Pro-

gression (POMP) function, hρ, with respect to the ProP function, f , for the `-step state forecast

is given by

hρ(α̂t|t, Σ̂t|t, `) = max
x∈Dρ(α̂t+`|t,Σ̂t+`|t)

f(x), (17)

where α̂t+`|t, Σ̂t+`|t are obtained from α̂t|t, Σ̂t|t through Eq.’s 11 and 12. We first observe that the

prediction region, Dρ(α̂t+`|t, Σ̂t+`|t), defined by Eq. 16 is convex.

It is possible that for many chronic illnesses, as with glaucoma, the ProP function will be a

logistic regression as described in Sec. 3.3. Therefore, maximizing the ProP function is equivalent to

maximizing w(x) (see Eq. 13), which is a linear function of x. Thus finding the point of maximum

progression is then a convex optimization problem. To solve this optimization problem, we rely on

the Karush-Kuhn-Tucker (KKT) conditions.

Recall that a is the progression vector of risk factors from Eq. 14. The optimization of the ProP

function over the prediction region has a closed form solution given by the Theorem 1, which

is proved in the Online Appendix. The closed form solution was determined using a two-stage

approach based on the observation that the KKT conditions are both necessary and sufficient. First

we solved the KKT stationarity conditions for an arbitrary coefficient of the constraint gradient.

The resulting solution was input into the complementary slackness conditions to determine the

appropriate coefficient.

Theorem 1. Given the `-step prediction region Dρ(α̂t+`|t, Σ̂t+`|t) defined by Eq. 16 with ρ ∈ (0,1)

and progression vector a, the maximum value of the ProP function, hρ, and the associated disease

state, h̃ρ, have a closed form solution,

hρ(α̂t|t, Σ̂t|t, `) = max
x∈Dρ(α̂t+`|t,Σ̂t+`|t)

a′x = a′α̂t+`|t +

√
χ2(1− ρ,n)a′Σ̂t+`|ta (18)
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h̃ρ(α̂t|t, Σ̂t|t, `) = arg max
x∈Dρ(α̂t+`|t,Σ̂t+`|t)

a′x = α̂t+`|t +

(√
χ2(1− ρ,n)

a′Σ̂t+`|ta

)
· Σ̂t+`|ta. (19)

Finally, given a progression threshold of τ , the time to next test is determined by the TNT

function, Fρ,τ (α̂t|t, Σ̂t|t), where Fρ,τ : Rn × (Rn × Rn)→ N, maps the current state to the time

interval between the current observation and the next observation:

Fρ,τ (α̂t|t, Σ̂t|t) = min
`∈Z+

` s.t. hρ(α̂t|t, Σ̂t|t, `)≥ τ. (20)

In the next section we prove that the POMP function, hρ, is monotonically increasing in `,

therefore the TNT function can be solved quickly and easily with iterative search techniques. For

a problem with n possible testing epochs a simple binary search that divides the search space in

half at each iteration can solve this problem in the worst case on order of O(log(n)), because the

terms are monotonically increasing in `. Even when the search space is large, the algorithm will

find the solution quickly. For example, imagine a disease that can be monitored on intervals of 1

second over the course of a year (a total of 31,449,600 possibilities). Our search method requires at

worst 25 function evaluations plus comparisons to solve the optimization, which would be nearly

instantaneous.

In Section 5, we compare the performance of our TNT algorithm with currently accepted medical

practice. We also present in Section 4.2 structural insights from our approach that have been

hypothesized by researchers and clinicians but, to our knowledge, have not yet been rigorously

validated. The first (see Jansonius (2007)) is that testing intervals for glaucoma should be variable

rather than fixed. Our approach goes even further by showing how the testing interval can be

determined using the key physiological indicators and providing an indication of the benefits.

4.2. Structural Properties of the TNT Algorithm

In this section we discuss the structural properties of the TNT algorithm and the insights they

provide. Property 1, given in Theorem 2, says that the further into the future we wait before

testing, the more uncertain we are about whether the patient has progressed or not and the more

likely the patient has gotten worse, and thus are more likely to test. Property 2, given in Lemma

1, states that the more patient observations the model has, the smaller the estimated covariance

is in the direction of progression, a (i.e. the direction of the progression vector a from Eq. 14).

Property 3, given in Theorem 3, states that the system will test more frequently when there is less
20
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information about a patient. Property 4, given in Theorem 4, states that the worse off (i.e. closer

to progression) a patient is, the more frequently they will be tested.

For many chronic diseases, called degenerative diseases, the disease tends to get worse over time.

Some clear examples include Alzheimer’s, Parkinson’s, and ALS among others. For glaucoma, lost

sight cannot be recovered. Mathematically the progressive nature of chronic disease can be captured

by the following condition on the system transition matrix, T.

Definition 1. We call a linear transformation T, a progressing transformation with respect

to progression vector a∈Rn, if and only if

(i) a′Tα≥ a′α for all states α∈ S, and

(ii) for any matrix B such that a′Ba≥ 0, it follows that a′TBT′a≥ a′Ba.

The intuition behind Def. 1 is as follows. Note that a is a vector representing the direction of

progression (in n dimensions). For (i), the linear transition matrix representing disease dynamics,

T, transforms the state α. If a′Tα≥ a′α then for any current state α, applying the linear transfor-

mation will always result in a state that is larger in the direction of progression. This captures the

medical property that patients with glaucoma do not regain lost sight (i.e. get “better”). Condition

(ii) is the quadratic version of condition (i) for capturing the progression concept with respect to

the covariance matrix.

Property 1 (Prediction Uncertainty), from Theorem 2, shows that as the Kalman filter pre-

dicts the patient’s state further into the future, it monotonically approaches the threshold, τ , for

scheduling a next test. It supports the intuition that, the further into the future we wait before

testing, the more uncertain we are about the patient’s disease state.

Theorem 2. If the linear system transformation, T, is a progressing transformation, then for

any state (α̂t|t, Σ̂t|t), the function hρ(α̂t|t, Σ̂t|t, `) = a′α̂t+`|t +
√
χ2(1− ρ,n)a′Σ̂t+`|ta is monotone

increasing in `.

Property 2 (Number of Observations vs. Uncertainty) shows that the covariance around

the disease state estimate in the direction of progression is decreasing in the number of observations.

Thus, the more information the system has about a patient, the less uncertainty there is in the

disease state estimate with respect to whether the patient has progressed. For a rigorous statement

of this property, we present notation and 3 definitions of properties of the covariance matrix.

We consider a system where there is an initial observation at time ts and a final observation at

time tf . Let Πn([ts, tf ]) be the set of open loop policies with n observations at times s1, s2, . . . , sn,

where the first observation is at time ts = s1 and the final observation is at time tf = sn. Let Σ̂πn
sj |sj−121
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be the covariance estimate at time sj given information up through time sj−1 under policy πn –

which can be determined from Σ̂πn
sj−1|sj−1

using the (sj − sj−1)-step prediction Eq. 12. Finally, let

Kπn
sj |sj−1

be the (sj − sj−1)-step Kalman gain under policy πn defined by replacing the one-step

covariance estimate with the (sj − sj−1)-step covariance matrix in Eq.’s 7 and 8.

Definition 2. Given an open loop observation schedule πn = {s1, s2, . . . , sn} ∈ Πn([s1, sn]), we

define the covariance estimate adjustment at time sj ∈ πn to be Cπn
sj ,sj−1

=Kπn
sj |sj−1

Z · Σ̂πn
sj |sj−1

.

In other words, the covariance estimate adjustment at time sj under policy πn is simply the amount

by which the covariance is reduced as a result of having an observation at time sj, given prior

observations at s1, . . . , sj−1. This is the matrix that is subtracted as the second term of Eq. 10 in

the Kalman filter update step.

Definition 3. For arbitrary square matrices M and N of the same dimension n, for any a∈Rn,

we let M�aN mean that a′(M−N)a≥ 0.

Definition 3 is similar to the matrix equivalent of “greater than” for scalars, but is tied to a specific

multiplier a. The final definition will enable us to define a relationship between the cumulative

covariance estimate adjustment over the entire schedule, πn, of systems with different observation

schedules.

Definition 4. We call a matrix sequence, A1,A2, . . . ,An, a-monotone if An �aAn−1 �a . . .�a
A1

It can be shown that systems with uncorrelated noise components have the a-monotonicity

property for the sum of covariance estimate adjustments. For correlated noise, this property is

difficult to show analytically but can be checked numerically for any system using some simple code

(we used Matlab). This has been checked and clearly holds for the system parameterized by our

clinical trial data described in Sec. 5. In discussions with our clinical collaborators, it is expected

that this property will hold for a variety of chronic diseases. The following lemma, which is proved

in the Online Appendix, shows that if more patient observations are available to the system the

covariance will be smaller in the direction of progression.

Lemma 1. Let πm ∈Πm([ts, tf ]) and let πn = πm∪πn−m ∈Πn([ts, tf ]) be a policy that calls for all the

observations of πm but also has an additional n−m observations within the interval (ts, tf ). Under

the assumption that the matrix sequence (
∑k

j=2 C
πk
j for k= 2,3, . . . such that π2 ⊂ π3 ⊂ · · · ⊂ πk) is

a-monotone in k, the covariance matrix Σπm
tf |tf
�a Σπn

tf |tf
for n>m.

22
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The result from Lemma 1 supports both Property 2 – more patient observations correlates with

more certainty about whether the patient has progressed – and Property 3 – the length of the

testing interval is shorter when the system has less information about a patient.

Property 3 (Number of Observations vs. Testing Frequency) shows that the length

of the testing interval is shorter (i.e. tests are scheduled more frequently) when the system has

less information. This property mirrors physician behavior in that a glaucoma specialist will often

see the patient more frequently when they have less information about the patient (e.g. a new

patient), but if the patient has been stable for a long time the specialist will begin to increase

the interval between tests. The following theorem, proved in the Online Appendix, supports this

intuition analytically.

Theorem 3. Given open loop testing policies πn ∈ Πn([ts, tf ]) and πm ∈ Πm([ts, tf ]) such that

n >m and πm ⊂ πn, under the assumption that the covariance estimate updates are a-monotone,

Fρ,τ (α̂t|t, Σ̂
πm
t|t )≤ Fρ,τ (α̂t|t, Σ̂πn

t|t ), where Fρ,τ (·, ·) is given by Eq. 20.

Property 4 (Disease State vs. Testing Frequency) shows that a patient who is “worse

off” will be tested more frequently than a patient who is “doing well.” The following theorem

supporting Property 4 is proved in the Online Appendix.

Theorem 4. Given two patients at time t with mean state vectors α̂1 and α̂2 and covariance

matrices Σ̂1 and Σ̂2, if a′α̂1 > a′α̂2 and Σ̂1 �a Σ̂2 then patient 1 will be tested no later than patient

2.

The next section illustrates how our approach can benefit clinicians by applying the POMP TNT

algorithm to two l0+ year clinical trials (AGIS and CIGTS).

5. POMP TNT Algorithm Applied to AGIS and CIGTS Clinical Trials

We begin by describing the design of the experiment and then we present the results comparing the

POMP TNT algorithm with fixed interval schedules that are common in practice. Starting from

a cost-based optimization in which there are costs for testing and costs for missed progression,

we identify a simple three-zone aggressiveness scale that allows clinicians to tailor their treatment

to match the needs of a patient in a manner that is simple and can be related to a traditional

fixed-interval testing approach. We then compare the associated Pareto improving schedules with

fixed interval testing schemes and age-based threshold policies.
23
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5.1. Model Usage and Design of Experiment

Data and model parameterization using AGIS and CIGTS clinical trial data is described in Sec.

3.2. After parameterizing the Kalman filter and ProP function with the training set as described in

Sec.’s 3.2 and 3.3, POMP TNT was used to dynamically generate a monitoring schedule for each

patient in the test data set. For both POMP TNT and fixed interval methods, the scheduling process

was terminated either at the end of the trial or when progression was detected, where progression

was determined by the criteria described in Sec. 3.3. Based on input from our clinical coauthors,

we compared POMP TNT with fixed interval schedules using three performance measures: (1)

average number of tests per patient (number of tests, lower is better); (2) fraction of samples among

progressing patients (our data is discrete and forms a sequence of measurement samples spaced

apart by 6 month intervals) at which the data indicates progression and for which the algorithm

called for a test (accuracy, higher is better); (3) average number of periods (where a period is 6

months) that a patient’s progression went undetected (diagnostic delay, lower is better).

The POMP TNT algorithm has two parameters which influence the testing aggressiveness: (1)

the threshold τ for determining whether progression has occurred using the logistic regression from

Eq. 13 and (2) the size ρ of the prediction region (i.e. confidence level). Using the training data,

for each interval length (i.e. 1, 1.5, and 2 years) we found the τ and ρ combination that generated

a POMP TNT schedule with approximately the same average number of tests per patient as

the corresponding fixed interval schedule while either (1) maximizing accuracy or (2) minimizing

diagnostic delay. To do so, we performed a two-dimensional search on the training data as follows.

Let TPPTNT (τ, ρ) be the average number of Tests Per Patient for the training data set using the

POMP TNT algorithm with parameters τ and ρ. Let TPPn be the average number of tests per

patient for fixed interval testing with testing interval length of n years. Now for each interval length

n= 1,1.5,2 years we perform the following two steps:

1. For each τ on a discrete grid between 0 and 1, compute ρn(τ) as the largest value of ρ (also

on a discrete grid between 0 and 1) such that TPPTNT (τ, ρn(τ))≤ TPPn.

2. Find τ ∗n = arg minτ Diagnostic Delay(ρn(τ)), where τ is optimized over the discrete grid from

(1) above.

The same search can be performed to maximize accuracy. Finding ρn(τ) can be done very quickly

using a binary search due to the fact that, for any given value of τ , the number of tests per patient

is monotone increasing in the size of ρ. Monotonicity in ρ can be verified quickly by considering

Eq.’s 18, 19, and 20. As will be seen in Sec.’s 5.2 and 5.3, we align the POMP TNT parameters

with these three fixed intervals common in current practice, n = 1,1.5, and 2 years, to enable
24
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Figure 4 The robustness of parameter choices for ρ and ρ(τ) is presented for low, medium, and high aggressiveness

settings as follows: (a) the calculated ρ(τ) for each value of τ , (b) the accuracy of setting the Time to

Next Test at a stage in which progression occurred vs. ρ(τ), (c) the diagnostic delay versus ρ(τ).

us to suppress the ρ and τ parameters and instead provide clinicians with aggressiveness levels

(zones) that they can adjust to tailor their treatment: low (τ ∗2 , ρ2(τ ∗2 )), med (τ ∗1.5, ρ1.5(τ ∗1.5)), and

high (τ ∗1 , ρ1(τ ∗1 )).

Robustness of Parameter Choice. A nice property of this approach to choosing algorithm

parameters ρ and τ is that the accuracy and diagnostic delay resulting from the choice are relatively

insensitive to the initial choice of τ and to the combination of (τ, ρ(τ)) for each regime, n. Fig. 4

(a) shows how ρ changes with τ for each level of aggressiveness (low, medium, high) as a result of

the search described above. Fig’s 4 (b) and (c) show the key performance metrics of accuracy and

diagnostic delay which, for each level of aggressiveness, are very robust to the choice of τ and ρ. As

long as the initial τ is selected from a large range in the middle - not too close to zero or one - the

accuracy and diagnostic delay resulting from (τn, ρn(τn)) is nearly identical for any initial choice

of τ . From our experiments applying the algorithm to the two clinical trial data sets (see Fig 4), it

appears that algorithm is robust in terms of accuracy and diagnostic delay for any choice of ρ(τ)

between 0.2 and 0.8.

5.2. A Cost Model and Zone-based Method for Clinician Model Control

From a healthcare policy perspective, it is important to consider the tradeoff between the cost of

undetected glaucoma progression (per unit of time), cp, and the cost per test performed, ct. Let

π = cp/ct be the cost ratio of progression cost to testing cost. A low cost ratio implies a desire to

avoid overtesting, while a high cost ratio implies a preference for more aggressive testing in the

hopes of early detection of progression. As mentioned previously, different patients may experience

differently the discomfort of both testing and the disease’s symptoms. The cost ratio can capture

the sense of how burdensome the testing procedures are relative to disease progression and produce

a schedule tailored to each patient’s preference. This ratio can also be used by the clinician to

capture how aggressively they feel the disease should be treated in each individual patient.
25
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We assessed the total cost per patient as cp × (diagnostic delay) + ct × (no. of tests). Using

a similar procedure to the one described in Sec. 5.1, we performed a search on the training set

to identify the ρ and τ combination that minimized the average total cost per patient for each

cost ratio. The upper left graph in Fig. 5 presents the conversion between the cost ratio and the

optimal value of ρ, where the optimal ρ and τ were determined from the training data. If testing

were allowed on a continuous time-scale then one would expect this plot to be monotonically

increasing. However, because it is only possible to test at discrete time points (6 month intervals)

the same ρ value may be optimal for multiple cost ratios. Further, ρ and τ are determined jointly

by maximizing performance on the training data. For these reasons, it is possible for the same

rho to be optimal for different cost ratios. In the remaining three graphs of Fig. 5 we plot the

performance metrics on the testing data versus the ρ values obtained from the cost optimization.
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Figure 5 Performance measures as a function of the cost ratio.

In the upper right graph of Fig. 5, we have marked three ρ zones related to how aggressively

the algorithm will test a patient: low, medium, and high. These zones are found by comparing the

testing frequency with the frequency of the 1, 1.5, and 2 year fixed interval testing schemes. The

frequencies of the fixed interval testing schemes are shown with the three different arrow types
26

Page 37 of 62 Operations Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

(zone three is reached at a cost ratio beyond the upper limit shown in the upper left plot). The

2 year fixed schedule does not result in an exactly proportional reduction in the number of tests

per year because of the nature of the end of horizon effects of our CIGTS and AGIS data sets.

The result suggests an intuitive zone-based method for adjusting the POMP TNT algorithm to

tailor the testing schedule to each patient. These zones will be investigated in the next section as

a simple 3-zone system for clinician interactive model control.

Remark 1. According to our clinical collaborator, a high aggressiveness testing schedule would

likely be aligned with 6 month testing intervals, medium to 1 year, and low to 2 years; however,

CIGTS and AGIS data are available only every 6 months, so a 6 month testing scheme would not

yield meaningful results for comparing POMP TNT with fixed-interval testing.

5.3. Pareto Improving Schedules

In this section we show how the POMP TNT algorithm dominates both fixed interval schedules as

well as an optimal age-based threshold policy in a Pareto sense. To test the fixed interval schedules,

which we call “FI”, we scheduled tests at fixed frequencies (i.e. periods of 1, 1.5, and 2 years).

These intervals were chosen because they are multiples of 6 months, ensuring that whenever a test

was called for, the data in the dataset were available to evaluate whether or not the patient had

progressed, and hence whether or not any given test caught an instance of progression and, if so,

how quickly it did so. Given the time step of the data, it is not very informative to consider a

6 month fixed interval because this implies testing in every possible period and its accuracy and

diagnostic delay cannot be analyzed under our current definitions. If the data were available every

three months, then we would update our definition of accuracy and diagnostic delay, leading a 6

month fixed interval scheme to achieve only an accuracy of 50% and diagnostic delay of of 1.5

months. If data were available, we could also update the time step for the Kalman filter to be 3

months instead of 6 months and be able to compare the two methods, though unfortunately data

was not available every 1.5 months.

VF follow-ups longer than one year are common in practice, as discussed by Stein et al. (2012).

Additionally, we have been able to further support our fixed interval choices of 1, 1.5, and 2 years

from data that we collected from patients being treated at the Kellogg Eye Center by various

clinicians. We randomly selected 34 patients seen at the Kellogg Eye Center between January 1,

1990 and July 31, 2013 with similar physiological characteristics as the patients upon which our

models were parameterized. IRB was obtained for this study, and all data were manually entered

with two people analysts assigned to each entry session to ensure reliability of the information
27
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gathered and avoid data entry errors. The median time in between readings was 370 days (i.e.

50% of the patients had over a year in between VF readings), and all patients sampled had over 6

months in between VF readings (the minimum was 217 days between readings). This suggests that

our selection of 1 year, 1.5 years, and 2 years is a good benchmark for comparing our algorithms

with current practice.

To avoid introducing any bias we varied when the first test of the sequence began, alternately

choosing the first test to be the patients first visit, second visit, third visit, and so on. We also tested

a policy that used information on the patient’s age as well. This policy employs two age thresholds

dividing the patients into young, middle age, and old age groups. Each group was assigned its own

testing frequency. For example, one may start out testing once every 6 months in the young group,

then switch to once a year for the middle-aged group, and finally to once every two years for the

older group. To find the best such set of policies, which we term “OPT TH”, we performed an

exhaustive search over the training data by changing: (1) the two age thresholds that divided the

three groups, and (2) the testing frequencies assigned to each group. We were then able to find the

thresholds and frequency assignments that performed efficiently (lying along the Pareto frontier).

As with the FI schedules, we varied the starting time of the first test within each age group to

avoid bias introduced by choosing an arbitrary starting point for the sequence of tests.

Whereas choosing continuous variables ρ and τ in applying POMP TNT requires a greater depth

of understanding, choosing a level of aggressiveness from among predefined zones (i.e. low, med,

high) is both intuitive and easy. Further, aligning the zones with a particular fixed interval schedule

allows clinicians to relate the zones to their previous experiences in treating patients. This increases

the ease of adoption into clinical practice. For the purposes of this paper, it is appropriate to

define the terms low, medium, high to specifically refer to levels of aggressiveness in patient testing

that have an equivalent average frequency to the 1, 1.5, and 2 year fixed testing intervals. Table

2 displays the accuracy and diagnostic delay (averaged across all patients in the test data set) of

each fixed interval (FI) schedule (1, 1.5, 2 years), the optimal threshold policies (OPT TH), and

the corresponding POMP TNT schedule (high, med, low).

Table 2 Performance of fixed interval testing schedules and POMP TNT algorithm

High Freq (1 yr) Med Freq (1.5 yr) Low Freq (2 yr)
FI OPT TH TNT FI OPT TH TNT FI OPT TH TNT

# Tests per yr 1.0 0.96 0.91 0.67 0.66 0.67 0.50 0.53 0.55
Accuracy 50% 50% 83% 33% 37% 63% 25% 26% 55%

Diag. Delay (mo.) 3.0 3.17 1.26 6.00 6.15 3.58 9.00 8.86 4.95
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Figure 6 Fixed interval and POMP TNT accuracy and diagnostic delay versus average tests per patient.

Table 2 shows that POMP TNT dominates the 1, 1.5, and 2 year fixed interval schedules by

providing higher accuracy and lower diagnostic delay with close to the same testing frequency on

average. Perhaps surprisingly, the optimal age-based threshold policies barely outperform fixed

interval policies. This implies that the information update from new test results used to make

POMP TNT testing decisions has a greater impact than the age of the patient used in isolation.

Also note that POMP TNT yields better accuracy than the 1 year fixed interval schedule while

using approximately as few tests as the 2 year fixed interval schedule. The Pareto curve in Fig. 6

further suggests that POMP TNT in fact would be able to dominate all fixed interval schedules

and optimal threshold policies across all dimensions. By adjusting model parameters in Fig. 6,

we designed schedules over a finer range of levels of aggressiveness than simply low, medium, and

high. For equivalent frequency FI and OPT TH schedules, the POMP TNT schedule with the

equivalent number of tests per patient yields between 30-33% increase in accuracy and between

40-58% decrease in diagnostic delay. As a final note, the model was tested on different subgroups of

patients. The algorithm outperformed yearly fixed interval testing for all subgroups. As expected,

it scheduled more tests per year on progressing (versus non-progressing) patients, on AGIS (versus

CIGTS) patients and on African-American (versus Caucasian) patients (significant at p=0.05, full

results can be found in Schell et al. (2014)).

We acknowledge that, if a sufficiently low cost of testing is provided (or a high cost of progression),

our algorithm will eventually call for testing every 6 months (or at every period at which testing

is possible). We also acknowledge that a fixed interval schedule may be preferred by some patients

and/or practitioners. For example, the patient may prefer knowing that he/she will always be

tested every 12 months rather than having to remember when he/she will be tested next. On the

other hand, it may be easier for providers to forecast resource utilization if all patients are tested

at fixed intervals of time. Also, some clinicians may prefer testing all patients at fixed intervals of

time, rather than having to rely on algorithms to determine when patients should be tested next.
29

Page 40 of 62Operations Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Notice, though, that testing at fixed intervals of time will come at the cost of increased testing

(and hence cost) and/or deterioration in the accuracy and diagnostic delay.

6. Integrating a Data-Driven Decision Support Tool into Glaucoma Clinical
Practice

In treating patients with open-angle glaucoma, clinicians are faced with the task of quickly and effi-

ciently processing the results from a number of quantitative tests including visual fields, intraocular

pressures, and results from structural measurements of glaucoma such as optical coherence tomog-

raphy (a topic for future research). Current practice often requires ophthalmologists or optometrists

to make gestalt judgments based on their experience and expertise as to whether glaucoma pro-

gression has occurred or not and when future testing should be performed.

Our glaucoma decision aid tool could enhance current practice by providing clinicians with per-

sonalized, dynamically updated recommendations regarding follow-up visits and diagnostic testing.

For each glaucoma patient, this method would compute the probability of progression of the patient

as a function of time in the future. In practice, past test results from a patient’s medical record

would be entered into the POMP TNT tool. As new tests are taken at subsequent visits, these

test results too would be entered into the tool, which would update in real time the Kalman filter

model estimates of key variables used to estimate the future probability of progression over time.

The decision support tool would provide the eye care provider with (1) the current probability of

progression (ProP) rating (signaling whether or not progression has occurred at that particular

visit), and (2) a suggested time length into the future for the patient to return for their next VF

and IOP tests, depending on the aggressiveness level (e.g. low, medium, or high) that the clinician

and patient deem appropriate. If greater detail is desired, our method can forecast the projected

ProP trajectory years into the future (with estimates on the variance of these forecasts). This

tool could be further enhanced in the future to incorporate additional parameters not presently

available to the investigators, e.g., central corneal thickness and OCT results (see De Moraes et al.

(2011)).

Starting from a cost-based optimization in which there are costs for testing and costs for missed

progression, we identified a simple three-zone aggressiveness scale that allows clinicians to tailor

their treatment to the individual patient. For each aggressiveness level, the tool would use corre-

sponding model parameters, which are pre-computed by the analysis software based on historical

data at the population level (e.g. see Figure 5 for an example of parameters set to match on

average the expected testing frequency of a fixed interval schedule). The clinician may choose the

aggressiveness level based on their clinical experience in managing patients with glaucoma along
30
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with consultation with the patient of his or her preferences. One guiding factor in choosing an

aggressiveness level could be, for example, how patients feel about their disease (e.g. Burr et al.

(2007)). Factors that may go into the decision include the age of the patient, the underlying sever-

ity of the glaucoma and perceived likelihood of progression to blindness (patients with more severe

disease tend to require closer monitoring), the status of the other eye (monocular patients are often

monitored more aggressively), the general health of the patient (patients who have limited life

expectancy may not require aggressive monitoring as they will likely die before they go blind from

glaucoma), input from the patient (some patients may be unwilling to undergo frequent monitor-

ing or live many hours away from the eye care professional and it would be infeasible to monitor

them very aggressively) and other factors. Clinicians are trained to make just such assessments

and to choose an aggressiveness level of monitoring that is appropriate for each patient. Combining

expert judgment, consultation with, and knowledge of the patient, the clinician may determine

how aggressively to test the patient. Our framework would then assist in the decision of when to

schedule the tests based on the desired level of aggressiveness. Notice that these are decisions that

clinicians already routinely make in conjunction with their patients. Since each aggressiveness level

is associated with a fixed interval testing frequency, the clinicians are able to relate this choice

back to testing schedules that they are familiar with. While we have mapped aggressiveness levels

to cost ratios, future work may also link the choice of aggressiveness level to the glaucoma-specific

health status of the patient and the patients utility/disutility from the disease (such as Burr et al.

(2007)). The analytics our algorithm provides can support and inform these decisions.

6.1. Model Limitations and Areas for Future Exploration

There are various limitations that are either not considered in this work or not possible using

existing systems science. The first limitation lies in the scope of factors that are incorporated in our

glaucoma decision aid. While factors such as medical comorbidities (lower systolic perfusion pres-

sure, lower systolic blood pressure, cardiovascular disease), central corneal thickness, and presence

of beta-zone parapapillary atrophy have been found in some studies and univariate analyses to be

risk factors associated with glaucoma progression, these data were not available in the datasets

used in the present analysis. Other factors, such as bilaterality of disease, exfoliation syndrome (a

subtype of glaucoma), and presence of hemorrhages around the optic disc were available in only a

subset of patients that we had access to, and were found not to be significant in predicting progres-

sion through backwards and forwards elimination. Although we were not able to account for some

factors considered in other studies, we were able to incorporate demographic characteristics of the
31
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patients such as age and race into the algorithm and to show that other factors did not improve

algorithm performance.

Even without these additional factors, the algorithm outperforms yearly fixed interval and opti-

mal age-based dynamic interval testing strategies. In the future we hope to acquire other data

sources which contain information regarding some of the additional risk factors to incorporate them

into the decision aid tool. Second, we performed our analysis on data from patients who agreed to

participate in a randomized clinical trial. Though we would not expect substantial differences in

performance on other patients with glaucoma who are receiving care outside the setting of a clinical

trial, we acknowledge that participants in clinical trials may be a biased sample. The fact that

POMP TNT performed well on participants in two different clinical trials, though, suggests that it

should perform well on patients with different severities of glaucoma. Additional work is required

to validate on decision aid tool on patients who are receiving care outside a clinical trial setting,

especially those with tests taken at varying time intervals. Third, we note that the assumption of

Gaussian noise is necessary to perform the computations of our linear Gaussian systems model.

While we validated the Gaussian assumption for our clinical trials patients, it is possible that

other systems may not follow strictly Gaussian noise distributions. In this case, the Kalman filter

remains unbiased but the estimator no longer minimizes the variance of the estimate, therefore

the resulting schedules would be more conservative (higher variance means more frequent testing).

Thus, in this case, some efficiency would be sacrificed, but the patients would benefit from earlier

detection. Fourth, we do not directly consider patient utilities (for testing versus progression), and

we rather leave this subjective assessment up to the clinician when they choose whether to use a

low, medium, or high aggressiveness parameter setting to incorporate into when next to test each

patient. Though one might try to estimate patient utility functions directly, we feel that it is best

for a clinician to decide this based on their knowledge of each patient and his or her circumstances.

Fifth, we consider patient heterogeneity through updating disease trajectories through the tests

that are received over time. The underlying transition matrix is not changed over time. Including

a learning component in the transition dynamics is the subject of future research. Sixth, we use

a regression-based smoothing method to estimate velocities and accelerations. While these func-

tioned sufficiently well in our case study, other methods such as fitting splines to the data may

prove useful in this and other contexts. Finally, in our analysis we assume full compliance with the

schedule generated and do not specifically model compliance in our algorithm. This is out of scope

for this work but represents an area for future exploration.32
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7. Conclusions and Future Work

This paper contributes a new modeling paradigm for the monitoring of glaucoma and other chronic

diseases. In contrast to disease detection models, chronic diseases often require monitoring a num-

ber of key physiological indicators that provide rich and dynamic information about a patient’s

changing condition. To take full advantage of this data rich environment, we developed a multi-

variate state space model of disease progression based on the Kalman filter to forecast the disease

trajectory. Then the Probability of Progression (ProP) function was optimized over the Gaussian

density of the Kalman filter to determine the Time to Next Test (TNT).

Beyond the ability to handle multidimensional state spaces, a key benefit of this approach is

that the model output summarizes the full distribution on the patient’s current state via the mean

vector and the covariance matrix of a Gaussian random variable. This allows the incorporation

of both patient system noise and testing noise into the state space model and yields a far richer

characterization of the patient’s health state than simpler estimation and forecasting methods. Our

decision support approach is flexible enough to allow clinician judgment by setting model aggres-

siveness levels to complement their medical knowledge with the advanced statistical predictions.

This approach will benefit both eye care professionals and their glaucoma patients, and it will

potentially translate to other chronic diseases.

Our validation study was based on data from the two 10+ year clinical trials, Collaborative

Initial Glaucoma Treatment Study (CIGTS) and Advanced Glaucoma Intervention Study (AGIS).

It demonstrated that POMP TNT was able to outperform fixed interval regimens in terms of

accuracy – 30-33% better than comparable fixed interval schedules – and diagnostic delay – 40-58%

better. This confirms a hypothesis within the medical community that variable intervals may in

fact outperform fixed interval testing. POMP TNT also provides a rigorous, analytical tool for

harnessing large amounts of historical data to determine the appropriate variable interval lengths

between tests. We believe that this research approach will be useful to clinical practice and provide

a theoretical framework for addressing the unique features of monitoring problems.
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Appendix

Appendix A: Proofs of Statements

In this appendix we provide a proof of the main statements and analytical results from the POMP

TNT algorithm.

Theorem 1

To show that hρ has closed form solution with optimal value h̃ρ, we begin with the fact that

the feasible region is convex. Further, the objective function can be reformulated to an equivalent

objective that is linear in the decision variable. It is clear that maximizing f(x) = 1

1+e−w(x) is

equivalent to maximizing the linear function w(x) = b+ ax. Since w(x) is a linear function of x,

we have that ∇w(x) = a. We reformulate maximization problem to the equivalent minimization

problem to match the standard KKT conditions:

arg max
Dρ(α̂t+`|t,Σ̂t+`|t)

a′x = arg min
Dρ(α̂t+`|t,Σ̂t+`|t)

−a′x (EC.1)

Due to the linear objective and the convex constraints, the KKT conditions for the equivalent

minimization problem are both necessary and sufficient. Thus if we can find a solution that satisfies

the KKT conditions, the solution will also be optimal.

First note that Σ̂t+`|t is positive semi-definite so a′Σ̂t+`|ta≥ 0. Secondly, if a′Σ̂t+`|ta= 0 then we

would have a perfect prediction of the patient’s future state without any uncertainty, which is not

realistic so without loss of generality we let a′Σ̂t+`|ta> 0. This eliminates any degenerate cases for

taking square roots or dividing by a′Σ̂t+`|ta.

Stationarity Conditions If we let f represent the objective function of the minimization problem

(Eq. EC.1) and g represent the constraint function then the stationarity conditions are

∇f +u · ∇g=−a′+ 2u(x− α̂t+`|t)′Σ̂−1
t+`|t =−a′+ 2u

√
χ2(1− ρ,n)

a′Σ̂t+`|ta
·
(

Σ̂t+`|ta
)′

Σ̂−1
t+`|t

=−a′+ 2u

(√
χ2(1− ρ,n)

a′Σ̂t+`|ta

)
·a′

where the first equality follows by taking the respective gradients and the second equality follows

by plugging in the proposed optimal solution, x∗ = h̃ρ(α̂t+`|t, Σ̂t+`|t), for x. If we then let

u=
1

2
·

(√
χ2(1− ρ,n)

a′Σ̂t+`|ta

)−1

, (EC.2)

clearly the stationarity conditions, ∇f +u · ∇g= 0, will be satisfied
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Complementary Slackness Conditions As before, we let x∗ = h̃ρ be the proposed solution to the

optimization problem

g(x∗) =

√
χ2(1− ρ,n)

a′Σ̂t+`|ta
·
(

Σ̂t+`|ta
)′

Σ̂−1
t+`|t

√
χ2(1− ρ,n)

a′Σ̂t+`|ta
· Σ̂t+`|ta−χ2(1− ρ,n)

=
χ2(1− ρ,n)

a′Σ̂t+`|ta
·a′Σ̂t+`|ta−χ2(1− ρ,n) = 0.

Therefore, the complementary slackness conditions are satisfied.

Dual Feasibility By Eq. EC.2 it is clear the u≥ 0.

Theorem 2

We prove monotonicity of hρ(α̂t|t, Σ̂t|t, `) given progression vector a via induction. For the

base case, consider hρ(α̂t|t,Σt|t,1) compared with hρ(α̂t|t,Σt|t,0). The following relationships hold

due to the Kalman prediction equations, Eq.’s 4 and 5

a′α̂t+1|t = a′Tα̂t|t (EC.3)

a′Σ̂t+1|ta= a′TΣ̂t|tT
′a+a′Qa. (EC.4)

First note that because T is a progressing transformation then a′Tα̂t|t ≥ a′α̂t|t. Using the

Cholesky decomposition on the positive semi-definite covariance matrix, Σ̂t|t = LL′, we get the

following relationships

a′TΣ̂t|tT
′a= a′TLL′T′a (EC.5)

a′Σ̂t|ta = a′LL′a. (EC.6)

Note that the right hand side (RHS) of Eq.’s EC.5 and EC.6 are symmetric with the right half of

the RHS being the transpose of the left half of the RHS (e.g. a′TL= (L′T′a)′). Rewriting the left

half of the RHS of Eq.’s EC.5 and EC.6 we get

a′TL= [a′TL1,a
′TL2, . . . ,a

′TLn] (EC.7)

a′L= [a′L1,a
′L2, . . . ,a

′Ln], (EC.8)

where Li represents the ith column of the L matrix, which is the matrix square root of Σt|t. Invoking

the properties of the progressing transformation, T, it is clear that

a′TLi ≥ a′Li for i= 1, . . . , n, (EC.9)
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which implies that each entry of the a′TL vector, the left half of Eq. EC.5, is larger than or equal

to each entry of the a′L vector, the right half of Eq. EC.6. Further, we have that L′T′a = (a′TL)
′

and L′a = (a′L)
′
. Combining Eq.’s EC.5, EC.6, EC.7, EC.8, and EC.9,

a′TΣ̂t|tT
′a = (a′TL1)

2
+ (a′TL2)

2
+ . . .+ (a′TLn)

2

≥ (a′L1)
2

+ (a′L2)
2

+ . . .+ (a′Ln)
2

= a′Σ̂t|ta. (EC.10)

The first equality follows from Eq. EC.7 and the fact that the right half of the Cholesky decom-

position is just the transpose of the left half. The inequality follows by applying the properties of

the progressing transformation, T, to each term, (a′TL1)
2
, of the sum. The final equality follows

from the same arguments as the first equality. This result could have been shown by invoking Def.

1 (ii); however, we chose the preceding approach to show that this property holds in general even

without requiring the second property of a progressing transformation. In fact, Eq. EC.10 will hold

for any positive semi-definite matrix as long as Def 1 (i) holds, and since the covariance matrix is

positive semi-definite it follows from the arguments of Eq. EC.10.

Finally since Q is positive semi-definite, a′Qa≥ 0. Now we have shown that a′TΣ̂t|tT
′a≥ a′Σ̂t|ta

and a′Tα̂t|t > a′α̂t|t. It follows directly from Eq. EC.4 and EC.3 that

hρ(α̂t|t, Σ̂t|t,1) = a′Tα̂t|t +

√
χ2(1− ρ,n)a′(TΣ̂t|tT′+Q)a (EC.11)

≥ a′α̂t|t +

√
χ2(1− ρ,n)a′Σ̂t|ta = hρ(α̂t|t, Σ̂t|t,0) (EC.12)

The base case has been proven. For the induction step, assume the claim is true for l, it follows

that the claim holds for l+ 1 directly using the same arguments and the fact that

a′α̂t+`+1|t = a′Tα̂t+`|t (EC.13)

a′Σ̂t+`+1|ta= a′TΣ̂t+`|tT
′a+a′Qa. (EC.14)

Lemma 1

To prove that Σπm
tf |tf
�a Σπn

tf |tf
for n >m and πn ⊃ πm we instead consider, without loss of

generality, systems over the interval [1, t] with a starting observation ts = 1 and a final observation

at tf = t∈ {3,4,5, . . .}. Now consider two policies, πm ⊂ πn. In policy πm there are m observations

at times s1, . . . , sm, and in policy πn there are n > m observations at times t1, . . . , tn such that

t1 = s1 = 1 and tn = sm = t and ∀i ∃j such that si = tj. Let the covariance estimate adjustment

for observation at time sj given the last observation was at time si under policy πm be denoted
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by Cπm
sj ,si

. The key observation to make is that the covariance matrix at the final time sm under

observation schedule πm can be shown after some algebra to have the following form:

Σπm
sm|sm = Σπm

sm|sm−1
−Cπm

sm,sm−1
= Tsm−sm−1Σπm

sm−1|sm−1
Tsm−sm−1

′
+Q−Cπm

sm,sm−1

=Tsm−sm−1

(
Tsm−1−sm−2Σπm

sm−2|sm−2
Tsm−1−sm−2

′
+Q−Cπm

sm−1,sm−2

)
Tsm−sm−1

′
+Q−

Cπm
sm,sm−1

= · · ·= Tsm−1Σπm
1|1T

sm−1′+

sm−1∑
j=0

TjQTj′−
m∑
j=2

Tsm−sjCπm
sj ,sj−1

Tsm−sj ′

= Σπm
sm|1−

m∑
j=2

Tt−sjCπm
sj ,sj−1

Tt−sj ′. (EC.15)

The ellipsis in the above equation represents the further expansion of the covariance matrix esti-

mate. Similarly we have that

Σπn
tn|tn = Σπn

tn|1−
n∑
j=2

Tt−tjCπn
tj ,tj−1

Tt−tj ′

Note that Σπn
tn|1 = Σπm

sm|1 because tn = sm = t and the policy has no effect on the t-step prediction

since no observations are incorporated in the predicted covariance. It is now clear that to show

Σπm
t|t �a Σπn

t|t , it is sufficient to show

n∑
j=2

Tt−tjCπn
tj ,tj−1

Tt−tj ′ �a
m∑
j=2

Tt−sjCπm
sj ,sj−1

Tt−sj ′ (EC.16)

First we show the result for an arbitrary feasible number of observations, m, that adding one

extra observation to the schedule will yield a covariance matrix that is quadratically smaller with

respect to the progression vector a. That is for all πm+1 ∈ Πm+1([1, t]) and πm ∈ Πm([1, t]) where

πm+1 ⊃ πm,

m+1∑
j=2

Tt−tjC
πm+1
tj ,tj−1

Tt−tj ′ �a
m∑
j=2

Tt−sjCπm
sj ,sj−1

Tt−sj ′.

In this case all the observations occur at the same time points except that the policy πm+1 with

m+ 1 observations will have an extra observation in between two of the observations from policy

πm. Without loss of generality let the extra observation occur at time s, where sj−1 < s < sj and

sj−1 and sj are the j − 1 and j observations in policy πm. All of the covariance estimate updates

prior to observations s remain unchanged between schedule πm and schedule πm+1 and thus can

be canceled out. Therefore it remains to show that

Tt−sCπm+1
s,sj−1

Tt−s′+Tt−sjCπm+1
sj ,s

+Tt−sj ′+

m∑
i=j+1

Tt−siCπm+1
si,si−1

Tt−sj ′ �a
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Tt−sjCπm
sj ,sj−1

Tt−sj ′+
m∑

i=j+1

Tt−siCπm
si,si−1

Tt−sj ′. (EC.17)

To show the relationship from Eq. EC.17 it is best to break the LHS and RHS into smaller

components and show how each component of the LHS dominates the corresponding component

of the RHS recursively building up to the entire equation. The way we do so is by factoring powers

of T out of each term as follows. Recalling that t= sm, the LHS can clearly be rewritten as

LHS =

(
m∏

i=j+1

Tsi−si−1

)
Tsj−sCπm+1

s,sj−1
Tsj−s′

(
m∏

i=j+1

Tsi−si−1
′

)
+(

m∏
i=j+1

Tsi−si−1

)
Cπm+1
sj ,s

(
m∏

i=j+1

Tsi−si−1
′

)
+

m∑
k=j+1

(
m∏

i=k+1

Tsi−si−1

)
Cπm+1
si,si−1

(
m∏

i=k+1

Tsi−si−1
′

)
= Tt−sm−1

(
Tsm−1−sm−2 ·

(
· · ·

·
(
Tsj+2−sj+1

[
Tsj+1−sj

{
Tsj−sCπm+1

s,sj−1
Tsj−s′+Cπm+1

sj ,s

}
Tsj+1−sj ′+Cπm+1

sj+1,sj

]
Tsj+2−sj+1

′
)

+ · · ·+Cπm+1
sm−2,sm−3

)
Tsm−1−sm−2

′
+Cπm+1

sm−1,sm−2

)
Tt−sm−1

′
+Cπm+1

sm,sm−1
. (EC.18)

The RHS of Eq. EC.17 follows the same form as Eq. EC.18 except with one fewer term.

RHS =Tt−sm−1

[
Tsm−1−sm−2 ·

(
· · ·

·
(
Tsj+2−sj+1

[
Tsj+1−sj

{
Cπm
sj ,sj−1

}
Tsj+1−sj ′+Cπm

sj+1,sj

]
Tsj+2−sj+1

′
)

+ · · ·+Cπm
sm−2,sm−3

)
Tsm−1−sm−2

′
+Cπm

sm−1,sm−2

]
Tt−sm−1

′
+Cπm

sm,sm−1
. (EC.19)

We begin by comparing the inner most terms (denote by curly brackets) of Eq. EC.18,

{Tsj−sC
πm+1
s,sj−1T

sj−s′+C
πm+1
sj ,s }, with the inner most term of Eq. EC.19, {Cπm

sj ,sj−1
}. We then develop

a recursive mechanism to show that the inequality of Eq. EC.17 continues to hold as we expand

outwards symmetrically according to the parentheses, encompassing larger groupings of terms.

Tsj−sCπm+1
s,sj−1

Tsj−s′+Cπm+1
sj ,s

�aCπm+1
s,sj−1

+Cπm+1
sj ,s

�aCπm
sj ,sj−1

. (EC.20)

The first inequality follows from the property that T is a progressing transformation and that

C
πm+1
s,sj−1 is clearly positive semi-definite. The second inequality follows from the a-monotone prop-

erty of the covariance estimate adjustments. To see this, consider a subsystem, with an initial

observation at sj−1 and a final observation at sj. The subset of policy πm that intersects with

this interval, π2 = πm
⋂

[sj−1, sj] consists of only the initial and final observations, π2 = {sj−1, sj}.

On the other hand π3 = πm+1

⋂
[sj−1, sj] = π3 = {sj−1, s, sj}. Since the two subsets of observations
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are being considered on the same interval and π2 ⊂ π3, we can invoke the a-monotonicity of the

covariance estimate updates to show that the inequality holds. Eq. EC.20 can be rewritten as

Tsj−sCπm+1
s,sj−1

Tsj−s′+Cπm+1
sj ,s

−Cπm
sj ,sj−1

�a 0. (EC.21)

We now use the relationship in Eq. EC.21 to show that the �a inequality also holds for the terms

enclosed in the square brackets [ and ] by subtracting those terms in Eq. EC.19 (RHS) from the

terms in Eq. EC.18 (LHS) and showing that the result is positive. First, Eq. EC.21 satisfies the

positivity conditions in the definition of a progressing transformation, and since T is a progressing

transformation, it follows that

Tsj+1−sj
{
Tsj−sCπm+1

s,sj−1
Tsj−s′+Cπm+1

sj ,s
−Cπm

sj ,sj−1

}
Tsj+1−sj ′ �a{

Tsj−sCπm+1
s,sj−1

Tsj−s′+Cπm+1
sj ,s

−Cπm
sj ,sj−1

}
�a 0. (EC.22)

Now we can show that �a holds for the terms of enclosed in the square brackets [ and ] Eq. EC.18

(LHS) and Eq. EC.19 (RHS) by showing that the subtraction of the square bracket terms of Eq.

EC.19 (RHS) from those of Eq. EC.18 (LHS) is non-negative.[
Tsj+1−sj

{
Tsj−sCπm+1

s,sj−1
Tsj−s′+Cπm+1

sj ,s
−Cπm

sj ,sj−1

}
Tsj+1−sj ′+Cπm+1

sj+1,sj
−Cπm

sj+1,sj

]
�a{

Tsj−sCπm+1
s,sj−1

Tsj−s′+Cπm+1
sj ,s

−Cπm
sj ,sj−1

}
+Cπm+1

sj+1,sj
−Cπm

sj+1,sj
�a

Cπm+1
s,sj−1

+Cπm+1
sj ,s

−Cπm
sj ,sj−1

+Cπm+1
sj+1,sj

−Cπm
sj+1,sj

�a 0, (EC.23)

where the first inequality follows from Eq.’s EC.21 and EC.22. The second inequality follows

from Eq. EC.20. The final inequality comparing a 3 observations with 2 observations follows from

a-monotonicity of the covariance estimate updates using the subsystem that intersects the two

policies, πm and πm+1, with the interval [sj−1, sj+1] and using the same arguments that were

previously used to show Eq. EC.20. It is clear that Eq. EC.23 is equivalent to[
Tsj+1−sj

{
Tsj−sCπm+1

s,sj−1
Tsj−s′+Cπm+1

sj ,s

}
Tsj+1−sj ′+Cπm+1

sj+1,sj

]
�a[

Tsj+1−sj
{
Cπm
sj ,sj−1

}
Tsj+1−sj ′+Cπm

sj+1,sj

]
(EC.24)

We have now shown the first two steps of showing that the �a relationship between Eq. EC.18 and

Eq. EC.19 holds for increasingly large groups of terms. These arguments can be continued on each

successive symmetric superset of terms (enclosed in parentheses) until the relationship Eq. EC.18

�a Eq. EC.19 is established. The result could also easily be shown using induction on the number

of terms in Eq. EC.18. Since the result did not depend on the particular interval into which the

Page 59 of 62 Operations Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

ec8 e-companion to Author: Dynamic Forecasting and Control for Glaucoma

extra observation was inserted, it is clear that the result is general. The result also holds for the

end points of the observation interval, [1, s1] and [sm−1, t], directly from the arguments above.

The general result for feasible n >m+ 1 can be shown by building up a series of policies πm ⊂

πm+1 ⊂ · · · ⊂ πn. Using the arguments developed to show that Σπm
t|t �a Σ

πm+1

t|t , we can iteratively

show that, for any feasible m,

Σπm
t|t �a Σ

πm+1

t|t �a · · · �a Σ
πn−1

t|t �a Σπn
t|t . (EC.25)

Thus the result has been shown for arbitrary feasible m and n>m.

Theorem 3

To prove the theorem, we first show that for all `= 0,1,2, . . .,

hρ(α̂t|t, Σ̂
πm
t|t , `) =a′T`α̂t|t +

√√√√χ2(1− ρ,n)a′

(
T`Σ̂πm

t|t T
`′+

`−1∑
j=0

TjQTj ′

)
a≥

a′T`α̂t|t +

√√√√χ2(1− ρ,n)a′

(
T`Σ̂πn

t|tT
`′+

`−1∑
j=0

TjQTj ′

)
a= hρ(α̂t|t, Σ̂

πn
t|t , `),

(EC.26)

where n > m and πm ⊂ πn represent a policy with m observations and n observations on [1, t]

respectively. The first term on the RHS and LHS is the same, so it is only necessary to compare

the terms under the square root. This is equivalent to showing that

a′

(
T`Σ̂πm

t|t T
`′+

`−1∑
j=0

TjQTj ′

)
a≥ a′

(
T`Σ̂πn

t|tT
`′+

`−1∑
j=0

TjQTj ′

)
a. (EC.27)

The Q terms cancel out. By Lemma 1 Σ̂πm
t|t − Σ̂πn

t|t �a 0, so it is possible to invoke the property of

progressing transformation T to obtain the result

a′T`
(

Σ̂πm
t|t − Σ̂πn

t|t

)
T`′a≥ a′

(
Σ̂πm
t|t − Σ̂πn

t|t

)
a≥ 0 (EC.28)

Eq. EC.26 follows from Eq. EC.27, which follows directly from Eq. EC.28. Since hρ(α̂t|t, Σ̂
πm
t|t , `)≥

hρ(α̂t|t, Σ̂
πn
t|t , `) for all `= 0,1,2, . . ., then clearly for a given progression threshold τ , the relationship

holds for the time to next test optimization:

Fρ,τ (α̂t|t, Σ̂
πn
t|t ) = min

`∈Z+
` s.t. {hρ(α̂t|t, Σ̂πn

t|t , `)≥ τ} ≥ Fρ,τ (α̂t|t, Σ̂
πm
t|t ) = min

`∈Z+
` s.t. {hρ(α̂t|t, Σ̂πm

t|t , `)≥ τ}
(EC.29)

Theorem 4
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For a given progression threshold τ , by combining Theorem 1, Eq. 20 and the Kalman filter

dynamics (Eq.’s 11 and 12, the time to next test becomes

Fρ,τ (α̂i, Σ̂i) = min
`∈Z+

` s.t. hρ(α̂i, Σ̂i, `) = a′T`α̂i +

√√√√χ2(1− ρ,n)a′

(
T`Σ̂iT`′+

`−1∑
j=0

TjQTj ′

)
a≥ τ.

(EC.30)

By assumption a(α1−α2)> 0, and because T is a progressing transformation we have that

aT`(α1−α2)≥ a(α1−α2)> 0 (EC.31)

T`Σ̂1T
`′ �aT`Σ̂2T

`′. (EC.32)

Therefore, hρ(α̂1, Σ̂1, `)≥ hρ(α̂2, Σ̂2, `). It follows that the optimal ` will be no greater for patient

1 than for patient 2. Therefore the result has been shown.

Appendix B: Kalman Filter Parameters Generated using the Expectation Maximization

Algorithm

Table EC.1 Initial state mean, α̂0, resulting from parameterizing the Kalman filter using the EM algorithm on

1 of the 25 training sets employed

MD MDV MDA PSD PSDV PSDA IOP IOPV IOPA

-7.44381 0.003039 0.016831 6.517315 -0.01236 -0.03076 18.09254 0.016256 0.033416

Table EC.2 Initial state covariance, Σ̂0, resulting from parameterizing the Kalman filter using the EM

algorithm on 1 of the 25 training sets employed

MD MDV MDA PSD PSDV PSDA IOP IOPV IOPA
MD 36.15138 0.33681 0.33681 -15.5884 0.086036 0.086036 5.703507 -0.10477 -0.10477

MDV 0.33681 0.048903 0.048903 -0.05318 -0.02304 -0.02304 -0.01323 -0.00235 -0.00235
MDA 0.33681 0.048903 0.048903 -0.05318 -0.02304 -0.02304 -0.01323 -0.00235 -0.00235
PSD -15.5884 -0.05318 -0.05318 14.78935 0.056415 0.056415 -4.44606 0.025469 0.025469

PSDV 0.086036 -0.02304 -0.02304 0.056415 0.330638 0.330638 0.403461 0.0222 0.0222
PSDA 0.086036 -0.02304 -0.02304 0.056415 0.330638 0.330638 0.403461 0.0222 0.0222

IOP 5.703507 -0.01323 -0.01323 -4.44606 0.403461 0.403461 14.058 0.704058 0.704058
IOPV -0.10477 -0.00235 -0.00235 0.025469 0.0222 0.0222 0.704058 0.109087 0.109087
IOPA -0.10477 -0.00235 -0.00235 0.025469 0.0222 0.0222 0.704058 0.109087 0.109087
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Table EC.3 Transition matrix, T, resulting from parameterizing the Kalman filter using the EM algorithm on 1

of the 25 training sets employed

MD MDV MDA PSD PSDV PSDA IOP IOPV IOPA
MD 1.003021 -3.58881 -0.37241 -0.01797 0.205312 -0.05576 -0.00746 0.093701 0.018624

MDV 0.000375 -0.08087 0.33813 -0.00134 -0.00368 -0.00228 -0.00096 0.013121 0.002372
MDA 0.000375 -1.08087 0.33813 -0.00134 -0.00368 -0.00228 -0.00096 0.013121 0.002372
PSD -0.00154 0.239755 -0.03171 0.975495 -0.9241 -0.09063 0.010256 -0.14553 -0.05459

PSDV -0.00479 0.001275 0.007727 -0.01568 0.00087 0.387155 0.003983 -0.01734 -0.0037
PSDA -0.00479 0.001275 0.007727 -0.01568 -0.99913 0.387155 0.003983 -0.01734 -0.0037

IOP 0.006415 0.041449 -0.40221 0.024959 0.016062 -0.01835 0.985638 -5.25162 0.128478
IOPV 0.001398 0.010213 -0.04977 0.003224 0.025421 -0.02874 -0.00136 -0.25763 0.403781
IOPA 0.001398 0.010213 -0.04977 0.003224 0.025421 -0.02874 -0.00136 -1.25763 0.403781

Table EC.4 Observation matrix, Z, resulting from parameterizing the Kalman filter using the EM algorithm on

1 of the 25 training sets employed

MD MDV MDA PSD PSDV PSDA IOP IOPV IOPA
MD 0.927448 1.355283 -0.38535 -0.09248 0.271156 0.110299 0.003191 -0.00476 -0.00756

MDV 0.000995 0.972492 -0.00563 0.00031 0.030232 0.006066 0.000265 0.00112 -0.00256
MDA -0.00106 -0.02208 1.010632 -0.00097 -0.01505 0.040117 -0.00018 0.003135 -0.0066
PSD -0.02617 -0.00448 -0.05896 0.947996 0.339113 -0.92653 0.005998 0.046821 -0.07376

PSDV 0.005458 -0.05824 -0.06234 0.013715 0.737644 -0.58944 -0.00263 0.033279 -0.01298
PSDA 0.004322 0.149238 -0.13946 0.015592 1.196934 0.006218 -0.00404 0.033505 -0.00513

IOP -0.02003 -0.08381 0.029234 0.059962 -0.40189 -0.02883 0.951103 1.125752 -0.42263
IOPV -0.00175 0.006423 -0.00235 -0.00241 -0.01189 -0.02631 0.000175 0.992286 -0.02058
IOPA 0.001061 -0.00212 -0.00517 0.002575 0.036796 -0.05861 -0.00055 0.009787 0.981959

Table EC.5 System noise covariance matrix, Q, resulting from parameterizing the Kalman filter using the EM

algorithm on 1 of the 25 training sets employed

MD MDV MDA PSD PSDV PSDA IOP IOPV IOPA
MD 3.821847 0.429743 0.429743 -0.24386 -0.03732 -0.03732 0.006708 -0.00205 -0.00205

MDV 0.429743 0.049965 0.049965 -0.03642 -0.00542 -0.00542 0.004943 4.85E-05 4.85E-05
MDA 0.429743 0.049965 0.049965 -0.03642 -0.00542 -0.00542 0.004943 4.85E-05 4.85E-05
PSD -0.24386 -0.03642 -0.03642 0.678131 0.073804 0.073804 -0.02853 0.008658 0.008658

PSDV -0.03732 -0.00542 -0.00542 0.073804 0.009348 0.009348 -0.01031 0.000173 0.000173
PSDA -0.03732 -0.00542 -0.00542 0.073804 0.009348 0.009348 -0.01031 0.000173 0.000173

IOP 0.006708 0.004943 0.004943 -0.02853 -0.01031 -0.01031 6.85508 0.760614 0.760614
IOPV -0.00205 4.85E-05 4.85E-05 0.008658 0.000173 0.000173 0.760614 0.086917 0.086917
IOPA -0.00205 4.85E-05 4.85E-05 0.008658 0.000173 0.000173 0.760614 0.086917 0.086917
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Table EC.6 Measurement noise covariance matrix, R, resulting from parameterizing the Kalman filter using

the EM algorithm on 1 of the 25 training sets employed

MD MDV MDA PSD PSDV PSDA IOP IOPV IOPA
MD 1.08078 0.005247 0.032441 -0.12939 -0.00045 -0.00109 -0.02859 -0.00283 -0.00974

MDV 0.005247 0.001539 0.000888 -0.00193 -0.00051 -0.00059 0.00155 1.95E-05 7.36E-05
MDA 0.032441 0.000888 0.010826 -0.005 -3.4E-05 -0.00201 -0.00363 -8.9E-05 -7.3E-05
PSD -0.12939 -0.00193 -0.005 0.626697 0.049795 0.049496 0.043898 0.002907 0.002815

PSDV -0.00045 -0.00051 -3.4E-05 0.049795 0.012349 0.013232 0.008165 0.000661 0.001218
PSDA -0.00109 -0.00059 -0.00201 0.049496 0.013232 0.028231 0.000811 0.000916 0.002269

IOP -0.02859 0.00155 -0.00363 0.043898 0.008165 0.000811 1.961556 0.009061 0.04003
IOPV -0.00283 1.95E-05 -8.9E-05 0.002907 0.000661 0.000916 0.009061 0.002746 0.002164
IOPA -0.00974 7.36E-05 -7.3E-05 0.002815 0.001218 0.002269 0.04003 0.002164 0.019343
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