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Finite�capacity Multi�class Production Scheduling

with Set�up Times

Eungab Kim and Mark P� Van Oyen

Abstract

We treat the scheduling of a single server in a �nite�bu�er capacity� multi�class� make�to�order production
system subject to inventory holding costs� set�up times� and customer rejection costs� We employ theoretical
and numerical analysis of a Markov decision process model to investigate the structure of optimal policies and
the performance of heuristic policies� We establish the monotonicity of optimal performance with respect to
the system parameters� Based on our insights� we provide a heuristic policy called the Capacitated Modi�ed
Index Rule �CMIR� for capacitated scheduling with customer loss penalties� The CMIR heuristic can easily
be precomputed and stored for real�time control� Numerical benchmarking with respect to the optimal
performance as well as an existing heuristic suggests that CMIR is very e�ective�

Keywords� Polling system� Finite bu�er� Capacitated production scheduling� Markov decision process
model� Near�optimal heuristic scheduling

�� Introduction

We focus on production systems that have multiple models �which we will refer to as job types�

a single production line �i�e� a single server� signi�cant set�up times and small work in process

�WIP� bu�er sizes� In this context we design a very e�ective heuristic scheduling policy called

the Capacitated Modi�ed Index Rule �CMIR� for production systems that are limited not only by

the rate of the production process and its inherent randomness but also by limitations on WIP

bu�er space� Systems which include features and issues of this sort arise in many applications�

Perhaps the most obvious application is to a �exible workstation or cell that processes several job

types within a larger production system� In some cases it may be possible to model an entire

line or subsystem provided only one job type can be served at a time� Examples such as this

with signi�cant set�up times occur in the operation of large metal rolling operations that produce

sheet metal from ingots� Some communication systems and subsystems such as network switches

pagers and multiple�access mechanisms contain similar issues and features� The treatment of these

scheduling issues for systems with small bu�ers is our research contribution in this work� Consider

the class of make�to�stock production operations that predict job completion times and quote them

to the customer� There will be a limit as to how long a customer is willing to wait for the �nished

product� Beyond that limit customers will not �enter� the system� One way to address this

issue is through models with �nite bu�ers� A more widespread motivation is the fact that many

operations have limited �oorspace conveyers or WIP storage bu�ers that place strict limits on

the amount of raw material of semi��nished goods that can be queued up at a station� These

are some of the typical problems that make this class of models important� Although analytical

approaches to production and control decisions have traditionally assumed in�nite bu�er capacities

for tractability we provide insights into the e�ects that �nite�bu�ers can have on the structure of

optimal scheduling policies and devise an e�ective heuristic policy�
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In a make�to�order environment we consider a machine or production module that may be

shared across N product types and must be dedicated to only one product type at any instant�

A model for this may take the form of a single�server with N input queues one for each job type

�model�� Orders of type n arrive at rate �n and the service rate for type n is denoted �n� To

provide an incentive to minimize average weighted WIP levels we include linear holding costs at

rate cn for each unit of time that jobs of type n wait in the system� By Little�s law �see Ross

����� the holding costs provide an incentive to minimize weighted cycle times�response times� In

addition the question of how to sequence the production process is complicated by set�up times

with mean �Dn that are incurred when the server switches to job type n from serving a di�erent

type� The class of systems described thus far as sequential production at a shared resource is a

common problem that has been treated under the rubric of polling systems� Polling systems have

received considerable attention in the case of in�nite bu�er capacity �see Browne and Yechiali ���

Levy and Sidi ���� Takagi ���� Duenyas and Van Oyen ��� Koole ���� and Reiman and Wein

������ Many intuitively reasonable policies exist and are being used in a wide variety of applications

�see Levy and Sidi ���� and Takagi ������ These works address in�nite�bu�er models to limit the

complexity of the resulting policy and the analysis required� Even so a thorough understanding

of the structural properties of optimal policies is not presently available� Most of the literature

focuses on the performance analysis of ad hoc policies of broad applicability�

In contrast we focus on systems with limited bu�ers of size Mn for type n which operate as

loss systems� For systems with �nite bu�ers and inventory holding costs we have seen that there is

an incentive to reject customers based on the state of the system and the particular parameters� In

some cases with high utilizations or long set�up times an optimal policy may even forever abandon

a queue� In most manufacturing and communication applications revenue is collected based on

the number of jobs processed among other factors� For this reason it is usually appropriate to

include a job rejection penalty that represents the revenue lost by a rejected customer or a measure

of the ill will generated� Under the assumption that high throughputs are desirable and unmet

demands are costly to the operation we charge a lump sum customer rejection cost Sn � � for

each loss of type n� Our objective is to understand the structure of dynamic scheduling policies

under the long�run average cost per unit time criterion and to capture our insights in the form

of a practicable heuristic policy that can be tailored to speci�c applications� For the sake of

mathematical tractability and simplicity we assume that customers�demands for each model type

are well approximated as independent Poisson arrival processes with rate �n and job service times

�set�up times� are exponential with rate �n � �D��
n  respectively� for type n� Thus we have a problem

of scheduling a single server in a multi�class M�M���fMngN� queueing system�

Analytically we show that there are clear monotonic relationships between the problem param�

eters and the optimal performance� For example we show that reductions in the set�up time cannot
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degrade system performance provided an optimal policy is employed� This stands in contrast to

cases in which service and set�up distribution may take general distributions and suboptimal poli�

cies are employed� In such cases Sarkar and Zangwill ���� presents paradoxical cases in which

reductions in both the mean and variance of the set�up time may result in degraded performance�

We o�er insights into the structure of optimal policies with �nite bu�ers which we capture in

the design of CMIR� In manufacturing contexts CMIR is of value for real�time machine control� It

is particularly important that the heuristics we derive are based upon comparisons of closed�form

functions of the basic problem parameters� The number of comparisons per state is equal to the

number of job classes so the computational complexity is roughly on the order of the complexity

of one value iteration step in a dynamic programming algorithm� For systems with a state space

that is not too large CMIR can be precomputed stored on a hard drive and applied in real time

without further computation� If the state space is too large to store in memory the heuristic is

simple enough that the computations can be made in real time for many manufacturing problems�

In addition CMIR is an analytical heuristic based on mean system parameters and thus it can

be implemented adaptively on�line to self�tune to changing demand rates and other parameters� It

is our hope that the insights gained here will remain useful in addressing other systems for which

exponential distributions are inappropriate� We point out that the approach used in constructing

our heuristics is applicable to distributions other than exponential�

Variations on the model described above have been well investigated in the literature for the

case of in�nite�bu�ers� If there are no switching penalties the c� rule �also known as Smith�s rule or

weighted shortest processing time �WSPT�� that always serves the available job with the largest c�

index is known to be optimal provided the bu�ers are in�nite �see Varaiya et al� ���� and Walrand

������ Work has also been done to extend the results to allow switching penalties� Hofri and Ross �	�

and Liu et al� ���� partially characterize the scheduling of homogeneous systems� For heterogeneous

systems Duenyas and Van Oyen ��� ��� and Koole ���� prove a partially characterization the optimal

policy and provide heuristic approaches� Reiman and Wein ���� gives heuristic scheduling policies

under a heavy tra�c assumption� Olsen ���� develops heuristics that consider the mean waiting time

�equivalently unit holding costs� and also waiting time variance and outer percentiles of waiting

time�

When the queue capacity constraint is introduced in scheduling multi�class systems analysis

becomes complex even without switching penalties and rejection penalties� Few results have been

reported for problems of this type in the optimal control of queues� Rosberg and Kermani ����

treats a scheduling problem that maximizes the long�run average reward in a �nite queueing model

without switching penalties� Under a light tra�c assumption they proposed a threshold policy

called the �over�ow scheduling policy� which they showed to be asymptotically optimal� If all

queues are below a threshold it serves a queue with the highest c� index among non�empty queues�
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otherwise it serves a queue with the highest �c� index among queues which have jobs beyond their

threshold values� For some problem instances their heuristic never serves queues with low c�

indices� Because their heuristic is derived under the assumption that all arrival rates are close to

zero the CMIR heuristic we develop will di�er from the idea that drives the �c� portion of their

rule�

Our presentation is outlined as follows� In Section � we provide a careful formulation of the

problem and its variants� In Section � we provide a result that gives insight into the appropriate use

of numerical approximations for in�nite�bu�er systems and we prove the monotonicity of system

performance with respect to all the problem parameters except for bu�er size� In Section � we

survey known structural properties of optimal policies in systems with in�nite capacity and we

develop the CMIR heuristic policy under the assumption that holding costs and set�up times are

signi�cant� We note our conclusions in Section 	�

�� Problem Formulation

A single server is to be allocated to jobs in a system of parallel queues indexed by N
�
�

f�� � � � � � Ng with queue n fed by Poisson arrivals with rate �n � � �independent of all other

processes�� Successive services in node n are independent and identically distributed �i�i�d�� expo�

nential random variables with mean ���n �� � ���n ��� and are independent of all else� We focus

attention on systems with a �nite bu�er Mn at queue n � N � With IR
� denoting the nonnegative

reals and t � IR
� let xn�t� � f�� �� � � � �Mng be the queue length of node n �including any customer

of node n in service� at time t� If xn�t� � Mn and an arrival of type n occurs at time n then the

arrival is simply lost and the state remains unchanged� Let �n
�
� �n��n and �

�
�
PN

n�� �n� The

scope of the heuristic we develop is limited to � � � which is typical of production systems in an

approximately steady state environment�

A switching or set�up time Dn is incurred at each instant �including time �� the server switches

to queue n from a di�erent queue to process a job� We assume that successive set�ups for node

n require strictly positive periods which are i�i�d� possess an exponential distribution with mean

�Dn�� ��dn� and are independent of all else� The system incurs an inventory holding cost at rate

cn cost units per job per unit time as well as a lump�sum rejection cost Sn �� � Sn ��� for each

customer which arrives to a full queue�

A policy speci�es at each decision epoch that the server either remains working in the present

queue idles in the present queue or sets up another queue for service� The class of admissible

strategies U  is taken to be the set of non�preemptive stationary nonrandomized greedy �that is

never idling in a nonempty queue� policies that are functions of the current state based on perfect

observations of the queue length processes �see page ��� of Ross ���� and pages �� �� and �	� of

Kumar and Varaiya ���� for terminology�� By non�preemptive we mean that service times and set

ups cannot be interrupted once initiated� Because of the non�preemptive assumption the set of
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decision epochs is assumed to be the set of all arrival epochs to an idle server service completion

epochs and set�up completion epochs�

We describe the state under policy � by the vector x�t� � �x��t�� � � � � xN�t�� 	�t�� n�t�� where

n�t� denotes that the server is located at node n�t� at time t and 	�t� is as follows� We set 	�t� � �

if the set�up of node n�t� is not complete at time t 	�t� � � if the set�up of node n�t� is complete

but the service of current job at n�t� is not complete and 	�t� � � if both set�up and service of

node n�t� are complete� Let the action space be A � f�� � � � � Ng� Suppose at a decision epoch t

the state is x�t� � �x�� � � � � xN � 	�t�� n�t��� Action A�t� � n � A where n �� n�t� causes the server

to set up node n� Action A�t� � n�t� results in the service of a job in n�t� if xn�t��t� � �� otherwise

idle in the current queue until the next arrival to the system� No other actions are possible� Thus

the state space is S
�
� �N

n��f�� �� � � � �Mng � f�� �� �g� f�� � � � � Ng�

Let fn��t� � t � R�g be the right�continuous process describing the location of the server at

time t under policy �� De�ne ��
n�T � to be the set of random instances on ��� T � in which the bu�er

is full �xn�t� �Mn� and an arrival is rejected under �� The average cost per unit time under policy

� �J�  can be expressed as

�J� � lim sup
T��

�

T
E

��
�
Z T

�

NX
n��

cnxn�t�dt 
NX
n��

X
t���

n�T �

Sn

��
� � �����

�� On Optimal Policies for In�nite and Finite Bu�er Systems

As a starting point consider the problem in the special case without set�up times� Kim and Van

Oyen ��� examines the structure of optimal policies with �nite bu�ers and job rejection penalties�

For two�class M�M�� systems it proves that there exists a monotonic threshold type of the optimal

switching curve provided that the delay of serving a job is always less costly than the cost of

rejecting an arrival� The threshold curve divides the state space into a region in which queue �

is served and another in which queue � is served� The case of a completely symmetric system

including bu�ers of equal size and zero holding costs is treated in Kim and Van Oyen ���� It proves

that an optimal policy is simply to serve the longest queue�

Problems with set�up times di�er from those without� Roughly speaking as the set�up times

increase from zero the switching threshold separates into two thresholds �set up queue � and set

up queue �� and in the region between them it is always optimal to remain in the current queue�

Although we have argued that �nite�bu�er systems are important in their own right they

can also be viewed as approximations to large or in�nite�bu�er systems� Because the size of the

state space must be limited for numerical computation we must choose an appropriate manner in

which to augment the transition probability matrix �t�p�m�� to account for truncation� That is

to say how does one construct the t�p�m� at the arti�cial boundaries of the state space caused by

truncation so as to obtain a good approximation of the in�nite�bu�er problem� We have described

in the formulation one natural augmentation from among in�nite possibilities� we simply reject any

	



arrival to a full queue� To numerically compute the performance of optimal and heuristic policies

we solved the uniformized �discrete�time� version of the continuous�time Markov chain� We set

the system transition rate to 
 � maxf maxn��n  �n��maxn��n  dn�g �see Ross ������ Thus for

system transition rate 
 with probability �n�
 the transition from �x� 	� n� to �x� 	� n� �a self�loop�

is made due to an arrival to the nth queue when xn � Mn� This choice is sensible and we will

demonstrate that the truncated system provides a lower bound to the performance of the original

system with an optimal �possibly nonstationary and randomized� policy� Thus as we would hope

our computations can be used to guarantee �subject to a tolerance limit �� that the degree of

suboptimality of a heuristic does not exceed a given amount for a particular problem instance� For

brevity all the proofs of this paper are omitted� instead see Kim and Van Oyen ����

Theorem 	� Provided S� � S� � � � � � SN � �� the numerical solution of the problem with

truncated queue lengths M�� � � � �Mn identi�es a stationary� non�randomized policy that provides a

lower bound to the achievable performance for the case of in�nite queue lengths over the class of

randomized� non�stationary Markov policies �UR�NS�� The same holds true when the system being

approximated has bu�er sizes M �
� �M�� � � � �M

�
N �MN �

Although insightful structural properties of an optimal policy are extremely di�cult to prove

in general we are able to verify that the model constructed behaves with a monotonic performance

that is intuitive� Because our model serves as a fundamental model of production this has important

implications for set�up time reduction� A longstanding and highly successful strategy for improving

system e�ciency aims to reduce set�up times and�or set�up costs� To the surprise of many Sarkar

and Zangwill ���� and Zangwill ���� rigorously demonstrate that this wisdom is simplistic and faulty�

Seemingly paradoxical behavior has been demonstrated in a number of cases for which set�up time

reductions result in increased inventory levels and degraded performance� It has not been a simple

matter to set these interesting cases in a context that resolves their divergence from the conventional

wisdom� In a di�erent direction Righter and Shanthikumar ���� indicates that if set�up times are

decreased according to the convex ordering sense average queue sizes for the original problem will

be stochastically larger than those for the new system� This is done for particular policies �gated

cyclic exhaustive� that have been suggested and analyzed in the literature� Van Oyen ���� analyzes

the in�nite bu�er version of the problem and showed that optimal policies are key to the realization

of performance improvements by means of set�up time reduction�

In a similar spirit we turn now to the current problem with capacitated queues and rejection

penalties� We show how the paradoxical e�ects of set�up reduction can be eliminated by employing

an optimal policy provided set�up times are decreased in the usual sense of stochastic ordering

�see Kim and Van Oyen ��� for the proof�� Having restricted attention to exponential service

distributions this is equivalent to an increase in the service rate� In fact a monotonicity property

exists with respect to every system parameter except the queue lengths�
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Theorem �� For the full stochastic multi�item production model with �nite queue length capacities

and having mean set�up time �Di� mean service time ���i� holding cost ci� rejection cost Si� and

arrival rate �i for queue i � N � a decrease in some or all of these parameters will result in an equal

or lesser expected cost� provided an optimal policy is employed for both the original system and the

new one�

We note that the results presented in this subsection can be extended in a straightforward way to

systems with general distributions on processing times and set�up times in the sense that stochastic

reductions in these times lead to increased performance as a result of decreased mean WIP levels�

It is also interesting to note that Theorem � extends to systems which include transition�dependent

switching rates dn�m�

The only parameters of the system model not treated in Theorem � are the queue capacities

M�� � � � �MN  which were addressed in Theorem � under the restriction of zero rejection penalties�

Unfortunately a moment of re�ection indicates that a decrease in Mi increases the steady state

probability of bu�er over�ow and hence increases the rejection penalties� Thus a blanket mono�

tonicity property does not apply to the queue capacities� A thorough study of the optimal selection

of Mi is beyond the scope of this paper which focuses on how best to use available capacity� We

o�er some indicative insights into this question for N � � queues� It is natural to investigate

whether or not the optimal cost is a convex function of the bu�er sizes which is a useful property

in searching for a globally optimal pair of bu�er sizes� Our numerical investigations suggest that

such is the case� The rejection costs are proportional to the probability of over�ow which we be�

lieve is geometrically decreasing in the bu�er size� Although excursions into regions of large WIP

are rare they can be expensive and can add signi�cant holding cost as the bu�ers increase �see

Theorem ��� We have made the assumption that job rejection penalties should be large relative

to holding costs to be consistent with the notion that e�ective systems will keep rejections rare�

Our numerical investigations show that although the objective function can be very sensitive to the

bu�er levels when bu�ers are relatively small and rejection events are frequent the optimal bu�er

sizes occur in regions for which the objective function is relatively insensitive to the bu�er sizes�

For example with S� � S� � ��� c� � c� � �� � �� � d� � d� � � and �� � �� � ���	 the

optimal bu�er levels are M� � M� � ��� This yields �J�� � ������� To assess the proportionality

of the bu�er levels to the ratio of rejection cost to holding cost we note that when the rejection

costs are reduced by half the optimal bu�er levels are � each while doubled rejection costs result

in bu�ers of size �� �with optimal costs ���� and ����� respectively�� The same e�ect is obtained

by halving the holding costs and keeping the rejection costs at ���� This is consistent with the

following general principal� Given that all the other parameters remain unchanged comparison of

a system with cost parameters S�� S�� c�� c� and one with costs scaled by r � ����� to get rS�� rS��

rc�� rc� results in the following� The objective function is scaled by a factor of r but the system
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dynamics have not changed and so the optimal policy remains exactly the same� Scaling of costs

does not change the optimal bu�er sizes�

Note that if rejection costs are zero it is always better to have the bu�ers as small as possible

�zero for our cost model�� When holding costs are small the holding cost penalty for large queue

lengths is small so the optimal bu�er sizing is large so as to minimize rejection penalties� We

observed that variation of the holding costs had a more pronounced a�ect on performance than did

the rejection costs�

To indicate the sensitivity of optimal bu�er sizes to holding cost and rejection cost consider

the original problem with only one change� c� � ��	 half as large as before in queue � only� The

optimal bu�er levels now become M� � ��� M� � �� which is still surprisingly symmetrical� This

yields �J�� � ����� Next we modify the original problem to have only one change� only half the

rejection cost is applied to station �� If one assesses the performance of the policy found for the

previous case �M� � ��� M� � ��� the cost is ������ Pursuing optimality to within ��
�� precision

we �nd that any M� � �� is optimal provided M� � � and �J�� � �������� �a savings of ���!

compared with M� � ��� M� � ���� Although this problem displays an extraordinary sensitivity

to M� it is gratifying that the optimal value of M� came out to be exactly one half the value of

�� in the original problem� To demonstrate the proportionality of the threshold to the rejection

penalty in this particular problem consider the case with the rejection penalty for station � at

one fourth its original value� any M� � �	 is optimal provided M� � � and �J�� � ������		� In

general however this proportionality does not hold and the sensitivity to M�� M� is di�cult to

predict�

�� A Heuristic Policy for the Loss Model with Rejection Penalties

In this section we develop the CMIR heuristic for scheduling a �nitemulti�class M�M�� queue�

ing system with signi�cant set�up times and � � � that incorporates the boundary e�ect caused by

�nite bu�ers� In Van Oyen et al� ���� and Van Oyen and Teneketzis ��	� optimal scheduling policies

with set�up penalties are investigated for problems without arrivals� These insights are employed

in deriving both CMIR and the heuristic developed in Duenyas and Van Oyen ��� ����

In the case of in�nite bu�ers �M��� � �� it is known �see Duenyas and Van Oyen ���� that

a top�priority queue exists even with general service times with mean ���n where a top�priority

queue refers to any queue �there may be more than one� that is served in a greedy and exhaustive

manner� If ci�i � cj�j for all j � �� � � � � N  then there exists a policy for which queue i is a

top�priority queue that is optimal within U  the class of admissible policies under the discounted

cost or average cost criterion� For an in�nite multi�class M�M�� queueing system with switching

penalties Duenyas and Van Oyen ��� presents a heuristic which we refer to as the Modi�ed Index

Rule �MIR� based on the reward rate indices corresponding to action sequences�

A moment of re�ection will reveal that the feature of �nite bu�ers destroys this structure� We
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Figure �� Optimal policy for Example ��

� � Serve the current queue �do not switch��
� � Serve queue � �switch to queue � if in ���
" � Serve queue � �switch to queue � if in ���

cannot in general expect the exhaustive property to hold for any queue because as one continues

to serve a queue n the other queues grow and threaten to incur signi�cant boundary e�ects� In

the presence of rejection penalties it is clear that the anticipation of rejection penalties will cause

an optimal policy to attempt to serve such a queue prior to its over�ow� Even in the case without

rejection penalties we �nd that there is an intrinsic boundary e�ect introduced by job loss �see

Kim and Van Oyen ��� for systems without set�up times�� This e�ect can be seen in the circles

plotted in the northeast portion of an optimal policy depicted in Figure �� In this �rst example

�test case � of Table �� we take M� � M� � �� S� � S� � � c� � c� � � �� � �� � � �� � ���

�� � ��	 and d� � d� � �� Notice the asymmetric arrival rates �� � ����

By the top�priority queue result of Duenyas and Van Oyen ��� both queues are top�priority

queues in problems with M� � M� � � but this is not observed� rather only queue � is a top�

priority queue� �Moreover most problems with �nite bu�ers do not give top�priority to either

queue unlike the in�nite bu�er case�� In this instance the region of switching actions from queue

� to queue � is enlarged and queue � is exhausted� This phenomenon is intuitively explained as

follows� When xi � Mi�� for i � �� � the inventory cost reduction rate �reward rate� for working
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in queue i is in an instantaneous sense ci��i 	 �i� 	 cj�j  where j denotes the queue other than

i� Because c��� � c��� in this example we see that the instantaneous reward rates are equal in

either queue and it is optimal to remain in the current queue� By explicitly including the terms

	ci�i we call attention to the fact that inventory cost �ows into the system with that intensity

whenever xi � Mi� The boundary e�ect occurs when xi �Mi because this term is absent� When

queue i is empty the instantaneous reward rate is 	cj�j  versus an instantaneous reward rate of

cj��j 	 �j� 	 ci�i if we were to serve in queue j� Thus the boundary e�ect at zero causes one

to prefer service to idling when the current queue is empty� �It is only the e�ect of set�up times

that can make it optimal to employ idling�� Thus this instantaneous reward rate is helpful in

determining the rough structure of an optimal policy� This line of thinking leads us to conclude

that if xi � Mi then it is better to switch to queue j �� i� This however is not the case because

the set�up times limit switching� Since c��� � c���� c� � c�� and �� � ��� when xi � Mi for

i � �� � the incentive to serve queue � �and allow queue � to over�ow� is greater than serving ��

c����	��� � ��	 � c����	��� � ���� Hence switching to � is more favorable than serving queue ��

From this we argue that when both queues have nearly full capacity switching to queue � is more

cost�e�ective than staying at queue � because the time required until queue � hits the boundary

is less than the time required until queue � hits the boundary� The boundary e�ect occurs even

deep in the interior of the state space when the switch is from a short queue to a long one �such

as x� � 	� x� � ��� The same arguments apply when the server is in queue �� The fact that the net

cost�reduction rates derived from bu�er over�ow �c��� c���� di�er by a factor of two causes the

large degree of asymmetry�

If each queue has a �nite bu�er size the properties used in developing MIR do not hold because

of the boundary e�ect� Since MIR was based on intuitive principles derived from queueing theory

our approach here is to develop a redesigned extension of MIR that explicitly incorporates the

boundary e�ect when computing reward rates corresponding to action sequences� Although we have

developed a heuristic speci�cally designed for cases without rejection costs �see Kim and Van Oyen

���� for brevity we present here only the case with rejection costs� To illustrate the signi�cant

impact of rejection penalties Example � modi�es the �rst example to include S� � S� � 	�����

which is shown in Figure �� The di�erence is dramatic and points out the di�culty of designing a

heuristic that is e�ective across a wide range of problem parameters�

Before detailing the development of CMIR we introduce the following notation� Decisions are

constrained by the nonpreemptive assumption for service and set�up times so we need only consider

decision epochs with 	�t� � � which signals that a service or set�up has just been completed� At

time t the vector of queue lengths is denoted by x � �x�� x�� � � � � xN�� Suppose that the server

provides service to queue i� Let the expected length of a M�M�� busy period when the server
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Figure �� Optimal policy for Example ��

� � Serve the current queue �do not switch��
� � Serve queue � �switch to queue � if in ���
" � Serve queue � �switch to queue � if in ���

exhaustively serves queue i beginning with xi jobs be denoted by

ti�xi�
�
� xi���i 	 �i�� �����

Let the expected time required for queue j �� i to reach Mj starting from xj �assuming queue

j is not served� be denoted by

sj�xj�
�
� �Mj 	 xj���j � �����

Now assume that the server determines to switch from queue i to j� Since queue j with initially

xj jobs must be set up before service can begin in queue j the expected number of jobs present in

queue j at the end of the set�up will be xj  �j �Dj � Thus a rough approximation for the time that

queue j will be in service under exhaustive service is given by

#tj�xj�
�
�
minfMj � xj  �j �Djg

�j 	 �j
� �����

We begin with the development of switching condition and then consider idling condition� Our

presentation will �rst explain how we capture the key factors when rejection penalties are neglected

and then we later show how these terms are incorporated�

��



Switching Condition

To derive a switching condition which dictates when to switch from a non�empty queue say i

we compare the expected reward rates corresponding to the following two action sequences�

�� Serve one more job in current queue i�

�� Switch to queue j �� i serve it exhaustively and return to queue i�

Suppose the server chooses action sequence �� First we compute the reward rate associated

with remaining in queue i� If the server remains in queue i it will earn rewards at a rate of ci�i

until the end of queue i�s busy period� Furthermore the boundary e�ect may contribute additional

reward for queues which over�ow� If queue j reaches Mj before the end of queue i�s busy period

the server can earn the extra rewards at a rate of cj�j from the time when xj � Mj to the end

of queue i�s busy period� If the rejection penalties are neglected our empirical test show that we

can approximate the index to remain in queue i as ci�i  �
PN

j���j ��i cj�j ��
��
i 	 sj�xj��

������i �

where a� � maxfa� �g� We restrict the summation to j �� i because our simple approximations

imply that queue i cannot hit the boundary while it is served� We now incorporate the rejection

penalties� The main di�erence comes from the fact that in computing reward rates we subtract

the rejection cost rate �jSj during intervals of time in which we expect queue j to be full� That

is during the period of bu�er over�ow arrivals are lost from queue k at the rate �k� Each of them

saves a holding cost ck but also incurs a rejection reward 	Sk � If queue j already has customer

over�ow upon the service completion in queue i and we assume that the server switches to queue

j to reduce the rejection costs the actual length of the over�ow will become ���i  �Dj 	 sj�xj�� It

is e�ective to approximate the expected reward rate for action sequence � by

$i�x� r�
�
�

ci  
PN

j���j ��i�cj 	 Sj��j��
��
i  �Dj 	 sj�xj��

�

���i
�����

On the other hand if the server decides to switch to queue j �action �� it will �rst have to

set�up queue j and earn no holding cost rewards for the expected duration of �Dj � For the purpose

of computing the rewards rates we assume that once the server switches to a queue the server will

remain in that queue until the end of its busy period� By switching to queue j exhausting it and

returning to queue i the server will have spent an expected total amount of time approximated by

T �xj�
�
� �Dj  #tj�xj�  �Di� Since the server works only during #tj�xj� the reward rate earned by

the server is cj�j#tj�xj��T �xj�� In addition to this earned reward the server can earn extra rewards

which result from allowing the other queues to hit the boundary� As we see in ����� the rejection

penalty is charged during periods of over�ow in contrast to the holding cost saved during these

same periods Hence the expected reward rate when the server switches to queue j is given by

$ij�x� s�
�
�

cj�j#tj�xj�  �cj 	 Sj��j� �Dj 	 sj�xj��
�  

PN
k���k ��j�ck 	 Sk��k�T �xj�	 sk�xk��

�

T �xj�
�

���	�

��



where the term cj�j� �Dj 	 sj�xj��
� is included for cases in which queue j hits the boundary prior

to set�up completion�

To conclude the switching rule we introduce two heuristic necessary conditions for switching

N	 and N��

Thus far we have assumed that the server exhausts queue j prior to returning to queue i� In

cases with rejection costs however the server might leave queue j with un�nished jobs when queue

i is in danger of customer over�ow� By the same argument the growth of queue j during the service

of queue i may require the server to return to queue j again before queue i is exhausted� Therefore

the heuristic should be designed to be well balanced in reducing both rejection and switching time

penalties� One way of doing this is to allow the server to switch only when the size of the current

queue i is small enough for the server to exhaust the other queue j and return to queue i prior

to hitting Mi� In other words if one expects the current queue i to face over�ow while queue j is

served the policy should not allow the server to switch even though the reward rate obtained when

switching is larger than that obtained when remaining� We formalize this idea as the following

necessary condition for switching N	�

Mi 	 xi
�i

� T �xj�� �����

The right side of the inequality approximates the expected time required for the server to switch

to queue j with xj jobs exhaust it and return to queue i while the left side is the expected time

to be taken until queue i is in danger of the customer over�ow�

To conclude the rule for switching we introduce the following condition N��

#tj�xj�

T �xj�
� �� �����

As pointed out in Duenyas and Van Oyen ��� overly frequent switches can lead to instability in

scheduling the system� This condition requires the server to spend an average proportion of the

time actually working that is greater than � �during the time interval consisting of the set�up

of queue j the service of queue j and the subsequent set�up of queue i�� Therefore the three

conditions $ij�x� s� � $i�x� r� ����� and ����� must be satis�ed to consider a switch from queue i

to j� If there is more than one queue which meets these conditions CMIR selects the queue with

the highest reward rate $ij�x� s� among such queues�

Idling Condition

To complete the characterization of CMIR we specify an idling policy for states in which there

are no jobs in the current queue i� To decide whether the server should switch or idle we consider

the following action sequences�

�� Wait until the next arrival to the current queue i�

��



�� Immediately switch to queue j and exhaust it�

When there is no rejection penalty sometimes it is cost�e�ective to wait until the next arrival to

the current empty queue and serve the busy period generated by this new arrival� With a rejection

penalty however this action cannot be justi�ed as easily because some queues may be in danger of

over�ow� Therefore the �rst action sequence should occur only when the system WIP is very low�

Queue j ��� i� is considered to be in danger of over�ow if it reaches full capacity before the time

of its set�up completion that is �Dj � sj�xj�� Among such queues a queue which has the largest

expected rejection penalty will be given the highest priority for switching� Let I��x� i�
�
� fj � j ��

i� �Dj � sj�xj�g denote the set of queues that are in danger of over�ow� Suppose I��x� is not empty

CMIR will switch to the highest priority queue de�ned as

j��i�
�
� argmaxj�I��x�i�fSj�j�

�Dj 	 sj�xj��g� �����

Next suppose I��x� � 
� that is no other queues are in danger of over�ow� For this case for

action sequence � we compute a reward rate index corresponding to action sequence ��

Using the same argument as that in switching condition the expected reward rate of switching

to queue j is given by

%ij�x� s�
�
�

cj�j#tj�xj�  
PN

k���k ��j�ck 	 Sk��k�T ��xj�	 sk�xk���

T ��xj�
� �����

where T ��xj� � �Dj  #tj�xj�� Since the server leaves an empty queue we do not assume that the

server returns to queue i as we did for T �xj��

To make the idling condition in a non�full system work e�ectively we place a necessary condition

on switching� If the current queue i is empty and I��x� i� � 
 queue j can be a candidate for

switching by CMIR only if xj � �j � �Di� This condition is suggested in Duenyas and Van Oyen ���

as a way to limit switches to j when the number of jobs there is relatively small� The judgment

that queue j is relatively small is made when setting up queue i would on average result in more

jobs arriving to j than are currently there� The e�ectiveness of this measure has been con�rmed

experimentally�

Let I��x� i�
�
� fj � j �� i� xj � �j � �Dig� If I��x� � 
 and I��x� i� �� 
 the %ij�x� s� index is used

to select the queue k��i� with the highest priority for switching according to

k��i�
�
� argmaxj�I��x�i�%ij�x� s� � ������

Finally if I��x� � 
 and I��x� i� � 
 CMIR follows action ��

Summary of the CMIR Scheduling Heuristic

We now summarize CMIR which is easily precomputed for every state in the state space with

the vector of queue lengths denoted by x � �x�� x�� � � � � xN��

��



�� If the current queue i is empty

�a� If I��x� i� �� 
 then switch to queue j��i� de�ned by ������

�b� else if I��x� i� � 
 and I��x� i� �� 
 then switch to queue k��i� de�ned by �������

�c� else idle at queue i until the next arrival to the system�

�� If the current queue i is not empty let IS � 
� For all j �� i satisfying the necessary switching

conditions N	 ����� and N� ����� as well as the index ordering $ij�x� s� � $i�x� r�� set

IS � IS � fjg�

�a� If IS �� 
 let j� denote the queue such that j� � argmaxj�ISf$ij�x� s�g and then switch

to queue j��

�b� otherwise process one more job in queue i�

Benchmarking the CMIR Scheduling Heuristic

In the following we present numerical results for CMIR� Unlike in�nite�bu�er queueing systems

the optimal solution of a �nite�bu�er queueing system can be computed to within a prespeci�ed

tolerance � using a dynamic program� The MIR heuristic for scheduling multi�class queueing

systems is reported in Duenyas and Van Oyen ��� to outperform several other scheduling policies

in the literature� Although MIR was intended to be applied to an in�nite�bu�er queueing system

we use its performance as well as the optimal performance as benchmarks to determine how much

�nite bu�ers a�ect the system performance� We compare the performance of our heuristic with

respect to the optimal as well as MIR�

We report �� examples exhibited in Tables � & �� Examples �&�� and ��&�� are for two�queue

and three�queue problems respectively� In Table � Examples �&�� are symmetric and the others

are asymmetric� In Table � Examples ��&�� are symmetric� We display the numerical performance

for these examples in Tables �&�� Although we tested many other examples the cases reported

are representative of problems with similar scalings of the parameters� We computed the optimal

average costs using VIPE algorithm developed in Kim et al� ��� and the average costs of CMIR

and MIR using successive approximation with a termination criterion of � � ���	 for two�queue

problems and ���
 for three�queue problems�

For symmetric two queue examples �Examples �&��� the results indicate that CMIR performs

better as ��� � becomes large �Examples �&�� ��� the rejection costs becomes small �Examples

�&�� and ��� the switching times become small �Examples ��&���� In Example � both heuristics

work well� however MIR works better and achieves nearly optimal performance�

For Examples �� and �� since c��� � c��� MIR exhausts queue �� When � is low �Example ���

both heuristics are within �! of optimal� however when � is high �Example ��� the performance

�	
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Table �� Input Data for Examples �&���

of MIR is more degraded by customer over�ow indicating that as one would expect the e�ect of

customer rejections is signi�cant�

Examples �	&�� are designed to have c��� � c��� but ��S� �� ��S�� Thus even though queue

� is a top priority queue queue � has greater over�ow penalties� Because MIR exhausts queue �

it performs three to �ve times worse than CMIR�

Examples ��&�� vary the bu�er sizes among other things� The results suggest that the per�

formance of CMIR is e�ective for a variety of bu�er sizes� however test cases not reported here

reveal that extremely small bu�er sizes �� or fewer jobs� render our approximations inaccurate

and ine�ective� If such cases are essential to an application we suggest that a targeted analysis is

appropriate for such cases�

Examples ��&�� of Table � depict representative examples with three queues indicating that

CMIR works well� It is not hard to �nd problems with very small bu�ers and�or large utilization

levels for which an optimal policy may forever abandon a queue but such problems are not well

motivated by applications� Examples ��&�	 have c��� � c��� � c
�
 and ��S� � ��S� � �
S
�

When bu�er sizes are nearly symmetric �see Examples ��&��� both CMIR and MIR work well�
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Example �� is similar to �� and shows that CMIR can be e�ective in dealing with an extremely small

bu�er of size � for type �� Both CMIR and MIR are sensitive to the bu�er sizes in the examples

we tested with three or more queues which was not the case in our tests with two queues� As a

special case Example �� has zero holding costs which is handled well by CMIR� MIR� however

shows about ����! suboptimality because it was never designed for such cases�

In addition to the examples presented here we tested a variety of examples including problems

with four queues� We noted that it is optimal to switch to a queue that is getting full less frequently

than we expected� In fact a large set�up time discourages the server from switching to a full queue

even when it is in danger of customer over�ow� MIR generally works well for our loss model despite

the fact that it was not designed for models with rejection costs �and thus does not prescribe

switching in response to full queues�� This can be explained intuitively as follows� Set�up times

reduce the e�ective server capacity for �nite bu�er systems unlike in�nite�bu�er systems which

can use arbitrarily large batch sizes �run lengths� to compensate for the overhead of each set�up�

Thus it is increasingly important as system utilization and the number of queues increases to avoid

excessive switching because signi�cant customer over�ow may be inevitable for systems with small

bu�ers�
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�� Conclusions

For systems with small bu�ers we developed the CMIR heuristic policy which captures the

boundary e�ect introduced by customer loss with positive holding costs and rejection costs� Nu�

merical results indicate that CMIR performs very well in particular for asymmetric and�or high

rejection cost systems� This is signi�cant to us for the following reasons� From an analytical per�

spective �nite bu�ers signi�cantly complicate the problem� Because analytical investigation of the

structure of an optimal policy and the boundary e�ects lies beyond the state of the art we turned

to the development of the CMIR heuristic policy to incorporate the conjectured relationships� Al�

though the CMIR heuristic�s primary value lies in providing a simple yet e�ective algorithm that

incorporates the realistic feature of �nite bu�ers the e�ectiveness of CMIR also corroborates the

validity of our insights into the the e�ects of small bu�ers�

Our approach used a natural truncation of the queue lengths which we proved in Theorem �

provides a lower bound �to within the tolerance speci�ed� to the optimal value function of the

in�nite system� We demonstrated the monotonicity of optimal performance to all of the system

parameters except for the queue capacities which justi�es managerial emphasis on set�up time

reduction e�orts�
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