
Heuristic Scheduling of

Parallel Heterogeneous Queues with Set�Ups

Izak Duenyas and Mark P� Van Oyen

Technical Report �����

Department of Industrial and Operations Engineering

The University of Michigan

Ann Arbor� MI �����

October ����
Revised June ���	

Heuristic Scheduling of

Parallel Heterogeneous Queues with Set�Ups

Izak Duenyas

Department of Industrial and Operations Engineering

The University of Michigan� Ann Arbor� Michigan �����

Mark P� Van Oyen

Department of Industrial Engineering and Management Sciences

Northwestern University� Evanston� Illinois 	�
�������

Abstract

We consider the problem of allocating a single server to a system of queues with Poisson
arrivals� Each queue represents a class of jobs and possesses a holding cost rate� general service
distribution� and general set�up time distribution� The objective is to minimize the expected
holding cost due to the waiting of jobs� A set�up time is required to switch from one queue
to another� We provide a limited characterization of the optimal policy and a simple heuristic
scheduling policy for this problem� Simulation results demonstrate the e�ectiveness of our
heuristic over a wide range of problem instances�

�� Introduction

In many manufacturing environments
 a facility processes several di�erent kinds of jobs� In

many cases
 a set�up time is required before the facility can switch from producing one type of

job to another� If several di�erent types of jobs are waiting when a unit has been completed
 the

decision maker is faced with the problem of deciding whether to produce one more unit of the same

type of job that the machine is currently set up to produce
 or to set up the machine to process a

di�erent kind of job�

The control decisions of when to set up the system and which type of job to produce have im�

portant e�ects on the performance of the system� First
 for each unit of Work�In�Process Inventory

that is waiting at a machine to be processed
 the �rm incurs signi�cant holding costs� Second

companies quote due dates to customers based on the work load they have in the system� To quote

feasible due dates
 the facility manager must understand the job scheduling policy employed� To

quote competitive due dates
 the manager must have an e
cient policy for scheduling service� It

�

is essential to provide an e
cient rule for the sequencing of jobs in the facility to quote customers

feasible and competitive due dates�

The optimal control of the Work� In�Process in manufacturing systems without set�up times as

well as the problem of quoting customer due dates have been extensively addressed in the literature�

It is well known
 for example
 that for an M�G�� queue with multiple job types
 if jobs of type i

are charged holding costs at rate ci and are processed at rate �i
 the c� rule �Average Weighted

Processing Time rule� minimizes the average holding cost per unit time �see Baras et al� ���

Buyukkoc et al� ���
 Cox and Smith ���
 Gittins ����
 Nain ��	�
 Nain et al� ����
 and Walrand ��	���

Other stochastic scheduling problems in the literature for which there are no costs �or no time lost�

for switching from one type of job to another may be found in Baras et al� ���
 Dempster et al�

���
 Gittins ����
 Harrison��	�
����
 Klimov ����
 ����
 Lai and Ying ����
 Nain ��	�
 Nain et al� ����

Varaiya et al� ����
 and Walrand ��	�� For systems with no switching times or costs
 researchers

such as Wein ���� and Wein and Chevalier ���� have developed due date setting rules�

There are few known results for the optimal scheduling of systems with switching costs or

switching times� The reason for this is the di
culty of the problem� Most intuitive results developed

for systems without switching penalties no longer hold in this case� Gupta et al� ���� considered the

problem with switching costs and only two types of jobs with the same processing time distributions�

Hofri and Ross ���� considered a similar problem with switching times
 switching costs
 and two

homogeneous classes of jobs� They conjectured that the optimal policy is of a threshold type�

Recently
 Rajan and Agrawal ���� and Liu et al� ���� have studied systems similar to the one

considered here and have partially characterized an optimal policy �in the sense of the stochastic

dominance of the queue length process� for the case of homogeneous service processes� Browne and

Yechiali �	� considered cycle times in heterogeneous systems and completely characterized scheduling

policies that optimize cycle times� Other work has concentrated on performance evaluation and

stochastic comparisons of di�erent policies �see Baker and Rubin ���
 Levy and Sidi ����
 Levy et

al� ����
 Takagi ���� and Srinivasan ������ Recently
 Federgruen and Katalan ���� have analyzed

the performance of exhaustive and gated polling policies where the server is also allowed to idle�

�

Their policies are applicable to the make�to�stock version of the problem considered here as well�

Federgruen and Katalan ���� have also analyzed the impact of changes in setup times on the

performance of multi�class production systems�

In this paper
 we address the stochastic scheduling of a system with several di�erent types of jobs

and switching times �equivalently set�up times� in a multiclass M�G�� queue� Our purpose is to

develop a heuristic that is simple enough to be implemented in a manufacturing environment while

remaining highly e�ective� We contribute a perspective on this problem based on reward rates�

The applicability of reward rate notions is demonstrated by their use in partially characterizing

an optimal scheduling policy under a discounted cost criterion� We relate the discounted case to

the average cost problem� We then use this perspective to develop a heuristic for the stochastic

scheduling problem with set�up times� The heuristic that we develop is extremely simple
 since it

is based only on statistical averages� Moreover
 our simulation results indicate that our heuristic

policy consistently outperforms other policies suggested in the literature�

The rest of the paper is organized as follows� In Section �
 we formulate the problem� In

Section �
 we partially characterize an optimal policy� In Section �
 we develop a heuristic policy

and indicate special cases under which the heuristic is optimal� In Section 	
 we test this heuristic

by comparing this heuristic to other heuristics in the literature� Our results indicate that for a

large variety of problems
 our heuristic consistently outperforms other policies in the literature�

The paper concludes in Section ��

�� Problem Formulation

A single server is to be allocated to jobs in a system of parallel queues labeled �� �� � � � � N and

fed by Poisson arrivals� By parallel queues
 we mean that a job served in any queue directly exits

the system� Each queue �equivalently
 node� n possesses a general
 strictly positive service period

distribution with mean ���n �� � ���n � �� and a �nite second moment� Successive services

in node n are independent and identically distributed �i�i�d�� and independent of all else� Jobs

arrive to queue n according to a Poisson process with strictly positive rate �n �independent of all

other processes�� As a necessary condition for stability
 we assume that � �
PN

i�� �i � �� where

�

�i � �i��i�

Holding cost is assessed at a rate of cn �cn � �� cost units per job per unit time spent in queue

n �including time in service�� A switching or set�up time
 Dn is incurred at each instant �including

time �� the server switches to queue n from a di�erent queue to process a job� The switching time

Dn
 represents a period of time which is required to prepare the server for processing jobs in a

queue di�erent than the current one� We assume that successive set�ups for node n require strictly

positive periods which are i�i�d�
 possess a �nite mean and second moment
 and are independent of

all else�

A policy speci�es
 at each decision epoch
 that the server either remain working in the present

queue
 idle in the present queue
 or set�up another queue for service� With IR
��ZZ�� denoting the

nonnegative reals �integers�
 let fXg
n�t� � t � IR

�g be the right�continuous queue length process of

node n under policy g �including any customer of node n in service�� Denote the vector of initial

queue lengths by X���� � �ZZ��N
 where X���� is �xed� Without loss of generality
 we assume

that node one has been set up prior to time t � � and that the server is initially placed in node

one� The average cost per unit time of policy g
 �J�g�
 can now be expressed as

�J�g� � lim sup
T��

�

T
E

�Z T

�

NX
n��

cnX
g
n�t�dt

�
� �����

The class of admissible strategies
 G
 is taken to be the set of non�preemptive and non�

anticipative policies that are based on perfect observations of the queue length processes� By

non�preemptive
 we mean that neither the service of a job nor the execution of a set�up can be

interrupted �by job service
 queue set�up
 or idling� until its completion� Idling is allowed at any de�

cision time� The set of decision epochs is assumed to be the set of all arrival epochs
 service epochs

set�up completion epochs
 and instances of idling� The objective of the optimization problem is to

determine a policy g� � G that minimizes �J�g��

For many policies ����� may be in�nite� To cite a well�studied example
 the limited�l cyclic

service policies become unstable for � � �
 as is demonstrated in Kuehn ���� and Georgiadis and

Szpankowski ����� For � � �
 it is well known that policies such as the exhaustive and gated cyclic

polling strategies yield a stable system �see Altman et al� ����� Thus
 �nite steady state average

�

queue lengths exist under an optimal policy
 and the objective is to minimize the weighted sum of

the average queue lengths�

Our analysis is framed within the class of policies
 G
 which contains �in general� nonstationary

and randomized policies� Nevertheless
 it is helpful to explicitly describe the subclass GPM � G

consisting of pure Markov �that is
 stationary and non�randomized� policies� Under the restriction

to pure Markov policies �and a memoryless arrival process�
 it su
ces to regard the decision to

idle as a commitment that the server idle for one �system� interarrival period� Thus
 the state of

the system is described by the vector X�t� � �X��t�� X��t�� � � � � XN�t�� n�t�� 	�t�� � S
 where n�t�

denotes that the server is located at node n�t� at time t
 	�t� is zero if the set�up of node n�t� is not

complete at time t and is one otherwise
 and S denotes the state space �ZZ��N�f�� �� � � � � Ng�f�� �g�

Let the action space be U � f�� �� �� � � � � Ng � f�� �� �g� Suppose at a decision epoch
 t
 the state

is X�t� � �x�� x�� � � � � xN � n�t�� 	�t�� � S� Thus
 	�t� � �
 since we require non�preemptive set�

ups� Action U�t� � �n� �� � U
 where n �� n�t�
 causes the server to set up node n� Action

U�t� � �n�t�� �� results in the service of a job in n�t�� Action U�t� � �n�t�� �� selects the option to

idle in the current queue until the next decision epoch
 another system arrival� No other actions

are possible�

�� On an Optimal Policy

In this section
 we provide a partial characterization of an optimal policy within the class of

policies G� The special case with all switching times equal to � has been well studied
 with early

results found in Cox and Smith ���� The non�preemptive c� rule is optimal� The index ci�i is

attached to each job in the ith queue� At any decision epoch
 serve the available job possessing the

largest index� Note that the index of any queue is independent of both the queue length �provided

it is strictly positive� and the arrival rate of that queue� Another special case has been treated

in Liu et al� ���� and Rajan and Agrawal ����� For problems that are completely homogeneous

with respect to cost and to the service process
 they partially characterized optimal policies as

exhaustive and as serving the longest queue upon switching�

We begin our analysis with the following de�nitions�

	

De	nition �
 A policy serves node i in a greedy manner if the server never idles in queue i while

jobs are still available in i and queue i has been set up for service�

De	nition �
 A policy serves node i in an exhaustive manner if it never switches out of node i

while jobs are still available in i�

De	nition �
 A top�priority queue refers to any queue �there may be more than one� that is

served in a greedy and exhaustive manner�

Although our focus for our heuristic is on the average cost per unit time criterion
 we have

found it insightful to study the discounted cost criterion as well because it demonstrates the use of

reward rate expressions which prove to be pertinent to the heuristic we develop� We de�ne the total

expected discounted cost criterion
 which we note is �nite for any policy� For discount parameter

 � �
 let

J��g� � Ef
Z �

�

�
NX
n��

cnX
g
n�t�

�
e��tdtg � �����

As in Harrison ��	� we transform the cost criterion of ����� to a reward criterion using the

device of Bell ���� Letting Y g
n �t� denote the right�continuous cumulative departure process from

node n under g through time t
 we have Xg
n�t� � Xn���� � An�t�� Y g

n �t�� One can show that the

minimization of J��g� is equivalent to the maximization of the following reward criterion�

R��g� � Ef
NX
n��

cn

��
Z �

�
e��tdY g

n �t�g � Ef
NX
n��

�X
k��

e��T
g
n�k�cn

��g � �����

where T g
n�k� is the kth service completion epoch under g corresponding to a service in node n � The

term cn

�� is interpreted as the reward received upon job completion
 and it equals the discounted

cost of holding that job forever�

It is useful to consider the policy
 call it g�
 that at time t � � sets�up node n
 serves a

deterministic number u jobs
 and then idles thereafter� We denote the expected discounted reward

earned from this action sequence by rn�u�� Using �����
 rn�u� � cn

��Ef

R�
� e��tdY g�

n �t�g� Let

fn�k denote the sum of k service durations in queue n� Letting Sn
�
� Efe��fn��g
 we use the i�i�d�

nature of successive services to get Efe��fn�kg � Skn� Thus

rn�u� � cn

��Sn��� Sn�

����� Sun�Efe
��Dng � �����

�

We de�ne the reward rate associated with this sequence of actions to be the ratio of expected

discounted reward
 rn�u�
 to the expected discounted length of time required by the action sequence�

rn�u�

Ef
RDn�fn�u
� e��tdtg

�
cn

��Sn��� Sn�
����� Sun�Efe

��Dng

����� SunEfe
��Dng�

� hn� �����

where hn is de�ned by

hn
�
� cnSn���� Sn� � ���	�

Given a discount parameter
 � �
 the reward rate earned by serving a single job in node i

�without a set�up� is hn� To see this key fact
 simply set Dn � � in ������ Theorem �
 which follows

states that a top�priority queue always exists under an optimal policy and can be determined as

the node maximizing hn over all n� Theorem � is similar to the results presented in Gupta et al

����
 Hofri and Ross ����
 Liu et al� ���� and Rajan and Agrawal ����� The novelty of our result lies

primarily in our treatment of unequal or heterogeneous service distributions at each queue�

Theorem �
 If hi � hj for all j � �� �� � � � � N then there exists a policy for which queue i is a top�

priority queue that is optimal within G under the discounted cost criterion� Similarly
 if ci�i � cj�j

for all j � �� �� � � � � N the same result holds under the average cost per unit time criterion�

Proof
 The proof is found in the Appendix�

Since a top�priority policy is optimal for any discount factor
 � �
 we note that the discounted

and average cost per unit time cases can be linked as follows�

lim
���

hn � lim
���

cnEfe
��fn��g�Ef

Z fn��

�
e��tdtg � cn�n � �����

The quantity cn�n can be regarded as the �reward� rate at which holding costs are reduced by

serving a job in node n� On the other hand
 a reward rate of zero is earned during idle periods

and set�up periods� We use these concepts of reward rates in the next section to derive a heuristic

policy for the problem�

�� A Heuristic Policy

We develop a greedy heuristic for the problem formulated in Section �
 where the queues are

ordered such that c��� � c��� � � � � � cN�N � We let xi denote the queue length at queue i� We

�rst develop a heuristic for the problem with two queues and then extend it to N queues�

�

�
�
 Heuristic for Systems with Two Queues

Consistent with the result of Section � that top�priority service of queue � is optimal
 we restrict

attention to a policy that does not switch from queue � to queue � when queue � is not empty�

De�ning a heuristic policy for two queues requires deciding when to switch from queue � to � when

queue � is not empty
 as well as the characterization of a rule for idling �i�e�
 should the server idle

at queue i or switch to the other queue��� Our heuristic is based in part on reward rate indices

corresponding to action sequences� In computing indices for each queue
 we assume that once the

server switches to a queue
 the server will remain at that queue until the end of its busy period�

We begin with the development of the rule for switching
 then prescribe a rule for idling�

Rule for Switching

We assume that nodes � and � are both nonempty �x� � �� x� � �� and focus on the question

of when to switch from node � to �� We let �i�xi� r� denote the reward rate �or expected reward

per expected unit of time� associated with remaining in queue i� If the server remains at queue i

and xi � �
 it will continue earning rewards at a rate of ci�i until the end of queue i�s busy period�

Hence
 we de�ne the index to remain in queue � if there is a job at queue � to be

���x�� r� � c��� if x� � �� �����

On the other hand
 if the server decides to switch to queue �
 it will �rst have to set�up queue

� and earn no rewards for the �random� duration of time D�� Then
 by Theorem �
 it will serve

queue � until the end of its busy period� Although the server could actually remain at node � for

a longer amount of time by idling at node � for a certain duration of time
 we disallow idling in

calculating an index for switching to node �� We also assume that at the end of the busy period

of node �
 the server switches back to node �
 and for a �random� duration of time D� again earns

no rewards� Hence
 by switching to node � to serve the jobs at node � and returning to � at the

end of the busy period of node �
 the server will have spent an expected total amount of time

ED� � ED� �
x����ED�
�����

� On average
 however
 the server will have earned a reward only for the

expected duration of time equal to x����ED�
�����

� Hence
 the index for switching to node � is given by

�

the reward rate of this action sequence�

���x�� s� � c���

x����ED�
�����

ED� �
x����ED�
�����

�ED�
�����

� c���
x� � ��ED�

x� � ��ED� � ��� � ���ED�
� �����

Comparing the terms ���x�� s� and ���x�� r�
 it is easy to see that regardless of how large the

expected set�up times ED� and ED� are
 ��x�� s� can be larger than ���x�� r�
 even for x� � �

if c� is su
ciently large� This means that for large values of c�
 the index for remaining at queue

� would always be smaller than the index for switching to queue �
 even when queue � has only

� job� It is clear
 however
 that when set�up times are non�zero
 switching to queue � as soon

as queue � has one job is not necessarily optimal
 even if c� is large� To see this
 note that one

way to interpret �
 the utilization of the server
 is that �for a stable system� the server is busy

processing jobs � proportion of the time� The proportion of the time available to the server for for

set�ups and idling is �� �� However
 if the server switches to queue � when queue � has only one

job and set�up times are high compared to processing times
 the server may spend a much larger

proportion of the time than ��� �� on switching� In such a case
 the server spends less than the

required proportion of time ������� serving queue �
 which would result in instability at queue ��

Note by �����
 however
 that the condition ��x�� s� � �c��� implies that the server
 on average

spends a proportion greater than � of the time actually processing jobs
 during the time interval

consisting of the set�up of queue �
 the service of queue �
 and the subsequent set�up of queue ��

Hence
 we impose this constraint as a requirement to be satis�ed before the server is allowed to

switch to queue �� In particular
 we use the following heuristic condition for switching from queue

� to � when x� � ��

���x�� s� � �c��� � ��� ��c��� � c��� � ��c��� � c���� �����

If ����� is satis�ed
 then the constraint ���x�� s� � �c��� is also satis�ed� Also
 if c��� � c���

then ����� will never be satis�ed and by Theorem �
 both queues are top�priority queues and it is

optimal never to switch from queue � to � �or from queue � to �� when x� � � �when x� � ��� We

note that the condition in ����� has some other desirable characteristics� As ED� or ED� get large

�

x� must be increasingly large to merit a switch from � to � when x� � �� Also
 as � approaches �

the number of jobs required at queue � before a switch is allowed increases
 and the policy tends

to serve the queues exhaustively�

Rule for Idling

To complete the characterization of our heuristic policy
 we specify a policy for idling when

there are no jobs in the node the server is currently set up to serve� Equation ����� does not apply

in this case
 since the server receives no rewards by idling at the current node� In order to decide

whether to switch to the other node or to idle
 we compare the reward rate at which the server will

earn rewards by immediately switching to the other node with that of idling until one more arrival

occurs at the other node� As in the derivation of �����
 a switch from node � to � that proceeds

to exhaust node � and returns to set up node one will earn a reward rate of ���x�� s� for the next

ED� �ED� �
x����ED�
�����

units of time �on average�
 where

���x�� s� � c���
x� � ��ED�

x� � ��ED� � ��� � ���ED�
� ���	�

Now
 consider the policy that idles at node � until the next arrival at node � and then switches

to node �� Of course
 before the next arrival at node �
 arrivals could occur at node �
 and the

server would earn some reward by serving them� However
 we assume �only for the purpose of

reward rate calculation� that no rewards are earned while idling
 and compute the reward rate

of the inadmissible policy that idles until the next arrival at node �
 then switches to node � to

exhaust it
 and returns to node one� This results in the following reward rate�

����x�� s� � c���

x������ED�
�����

x������ED�
�����

� �
��

� ED�� ED�

� �����

The condition for switching from � to � when there are no jobs at node � is then given by

����x�� s� � ���x�� s� � �����

which implies that the server earns rewards at a higher rate by switching now than by waiting

for one more arrival at node �� Simplifying ����� leads to a very simple formula for the number

��

required at node � so that the server will switch to node � from node � without idling�

x� � ��ED� � �����

Similarly
 when the server is at node �
 and there are no more jobs to serve
 it immediately

switches to node � if x� � ��ED�� We also note that our simulation experience indicates that

requiring the server to serve at least one job upon switching to a queue before it can switch to

another queue improves the performance of the heuristic� Hence
 we also place this constraint on

the server� We now describe our heuristic control rule in full�

Heuristic Policy for Systems with Two Queues

�� If the server is currently at node � and x� � �
 then serve one more job at node ��

�� If the server is currently at node � and x� � �
 then switch to node � if x� � ��ED�� Else

idle until the next arrival to the system�

�� If the server is currently at node �
 x� � �
 and ���x�� s� � c���� � ��� ��c��� then serve

one more job at node �� otherwise

a� If no jobs have been processed since the last set�up
 process one more job at node ��

b� If at least one job has been processed since the last set�up
 switch to node ��

�� If the server is currently at node � and x� � �
 then switch to node � if x� � ��ED�� Else

idle until the next arrival to the system�

We note that regardless of the initial number of jobs in either queue � or queue �
 the condition

����� of our heuristic for two queues guarantees that eventually the length of queue � will be less

than ��ED� and the length of queue � will simultaneously be less than ��ED�
 �i�e�
 that the

queues will be stable�� To see this
 �rst suppose that ����� can be satis�ed for a �nite queue length

x��� Note that x� � x�� is required for the server to switch from queue � to �� Since we assume that

�� � �� and the server serves queue � exhaustively
 only the stability of queue � is in question�

Without loss of generality
 assume that at time t � � the server is set�up to serve queue � and that

��

x� � ��ED�� The server will serve queue � either until it is exhausted or until x� � x�� �in which

case it switches to queue ��� The server will then alternate without idling between the exhaustive

service of queue � and the �possibly non�exhaustive� service of queue �� For the sake of argument

construe the set�ups of both queues as being associated with the service of queue �� The epochs

of switching to node one occur only at points under which ����� is satis�ed� Hence
 during the

time interval consisting of setting up queue �
 processing jobs in queue �
 and setting�up queue

�
 the percentage of time that the server does useful work �i�e�
 the server is processing jobs and

not being set�up nor idling� is greater than ���� percent �compare ����� and ������� Under our

construction
 the server is ���� utilized during the remaining periods
 which correspond to actual

service in queue �� Thus
 the server is utilized greater than ���� percent of the time prior to the

�rst instance of idling
 and thereby e
ciently works o� both queues� The �rst instance of idling

occurs when one queue
 i
 is exhausted and the other
 say j
 is such that xj � �jEDi� Thus

stability is ensured when x�� is �nite� We conclude with the case where no �nite x�� exists to satisfy

������ In that case
 provided x� and x� are both large at t � �
 our heuristic serves both queues

exhaustively and without idling until the point at which one queue
 i
 is exhausted and the other

say j
 is such that xj � �jEDi� It is well known that exhaustive
 nonidling service is stable for

� � ��

�
�
 Heuristic For Systems with N Queues

Using the ideas developed previously for � queues
 we can now extend our heuristic to the case

where the system has any number of queues� To begin
 assume that the server is currently serving

queue i and that xi � �� Because a reward rate of ci�i can be achieved by serving a job in node

i and a reward rate of at most cj�j can be achieved by serving jobs in node j
 it su
ces to only

consider switching from i to queue j � f�� �� � � � � i� �g� Then to switch to any queue j
 we require

that

�j�xj � s� � cj�j�� ci�i��� �� and j � f�� �� � � � � i� �g � �����

��

where

�j�xj � s� � cj�j
xj � �jEDj

xj � �jEDj � ��j � �j�EDi

� ������

Unlike the case of two queues
 there may be more than one queue j that satis�es the constraint

������ Thus
 we require that the server switch to the one with the highest reward rate
 �j�xj � s��

Similar to the case of two queues
 we de�ne an idling policy to treat the case where the server

is in queue i with xi � �� In this case
 the server must decide not only whether to idle but also to

which queue to switch to� We place a constraint similar to ����� on switching from queue i when

xi � �� To develop such a rule
 we �rst note that the reward rate of ������
 �j�xj � s�
 includes

both EDi and EDj� This is because by switching from queue i to queue j
 the server is leaving

behind some un�nished jobs at queue i and must return to �nish them at a certain point� If xi � �

however
 there will be no jobs left behind and in this case
 we de�ne the reward rate earned by

switching to queue i as

j�xj � s� � cj�j
xj � �jEDj

xj � �jEDj

� ������

We use the following idling procedure for choosing the queue to switch to when the server is in

queue i and xi � ��

�� Let � � 	�

�� For all j �� i
 if
j�xj � s� � cj�j�
 then let � � �
 j�

�� If � �� 	 then among all j � �
 let k denote the queue such that k � argmaxj��
j�xj � s�� If

xk � �kEDi
 then switch to queue k
 else idle until the next arrival to the system�

�� If � � 	
 then let k denote the queue such that k � argmaxj ��i
�xj � s�� If xk � �kEDi then

switch to queue k
 else idle until the next arrival to the system�

The above procedure determines the set of queues such that if the server switched to a queue

in this set
 it would actually be processing jobs at least � fraction of the time until the end of that

queue�s busy period� From this set
 it selects as a candidate the queue that has the highest reward

rate� On the other hand
 if the set � is empty
 another queue may yet be attractive enough to

��

justify a switch
 and the heuristic selects as a candidate the queue that has the highest reward rate

among all queues �� ���� N � The procedure then uses the simple rule developed for the case of two

queues to decide whether to idle or to switch to the candidate queue� Having explained the logic

of our heuristic
 we can now state it formally�

Heuristic Policy for N Queues

Assume that c��� � c��� � � � � � cN�N
 the server is set up to serve queue i
 and queue i

contains xi jobs�

�� If xi � �
 use the idling policy developed above�

�� If xi � � and no jobs have been served in queue i since the last set�up
 serve a job in i�

otherwise
 employ the following switching rule� For all j � i
 compute �j�xj � s� using �������

Let � � 	� For j � �� � � � � i � �
 if queue j satis�es constraint �����
 then � � �
 j� If �

is nonempty
 then switch to the queue j � � that has the highest index �j�xj � s�� otherwise

serve one more job of type i�

The heuristic
 which we described above
 is known to have optimal characteristics in the fol�

lowing limiting cases�

�� Di � � for all i� In the case where all the set�up times are zero
 our heuristic reduces to the

c� rule which is known to be optimal� That is
 at each instant serve the job that maximizes

ci�i�

�� Symmetrical systems� Suppose that all the queues are identical with respect to holding costs

service distribution
 arrival rate
 and set�up distribution� In this case
 the heuristic would

serve each node exhaustively
 and upon switching would always choose the queue that has

the largest number of jobs� These policies have been shown to be optimal among the set of

non�idling policies �Liu et al� ����
 Rajan and Agrawal ������ The optimal idling policy is not

known�

��

�� �i � � for all i � �� � � � � N � In the case of no arrivals
 our heuristic serves all the queues in

an exhaustive manner� Once a queue is exhausted
 the server switches to the queue that has

the highest index cj�j
xj�

��
j

xj�
��
j �Dj

� Van Oyen et al� ���� proved this index policy to be optimal

for the system with an initial number of jobs in each queue and no arrivals�

Having developed our heuristic
 and speci�ed the cases where it has optimal characteristics
 we

undertake a simulation study in the next section to test its performance�

�� A Simulation Study

The real test of any heuristic is its performance with respect to the optimal solution� In the

problem considered here
 however
 an optimal solution is not known
 except for a few special cases�

Hence
 we chose to compare our heuristic to other widely used policies in the literature� To test our

heuristic
 we generated a large variety of problems� The cases that we tested included symmetric

as well as asymmetric queues
 high and moderate utilization
 and both equal and di�erent holding

costs for di�erent job classes� For each of the cases
 we tested our heuristic by simulating 	����

job completions from the system� We repeated the simulation �� times and averaged the holding

cost per unit time that we obtained in each run�

We �rst tested our heuristic on a variety of problems with � queues� The data for the �� di�erent

examples with � queues are displayed in Table �� In all of the test problems that we report here

the service times and the set�up times are exponential� However
 we have also tested our heuristic

with other distributions
 including the uniform
 normal and deterministic cases
 and have obtained

results very similar to those reported here� Examples ��� have c��� � c���� For these cases
 the

best policy that we know of is of an exhaustive
 threshold type such that the server remains at each

queue until it is exhausted and idles until the number of jobs at the other queue is beyond a certain

threshold� Thus
 these � cases test the idling rule of our heuristic� They include cases with high as

well as moderate utilization and mean set�up times� If one test case pairs the queue with the high

arrival rate with a high set�up time as well
 the next case pairs that queue with a low set�up time�

We compared our heuristic to �ve widely used and analyzed policies from the literature� The

�rst of these �Exhaustive� serves each of the queues in an exhaustive and cyclic manner� That is

�	

the server �nishes all of the jobs of type �
 then if there are any jobs of type �
 switches to queue �

and exhausts all the jobs of type �
 and so forth� �We found that not switching to any empty queue

improved performance
 hence our exhaustive and gated policies do not switch into queues that

are empty�� The second alternative
 the gated heuristic
 does not exhaust the jobs at each queue�

rather
 the server gates all the jobs present at the time its set�up is completed
 and serves only

those jobs� As a third alternative
 we tested the �exhaustive
 strict�priority� c� rule as a heuristic�

We also tested heuristic policies requiring a search� We searched a class of exhaustive
 threshold

policies by simulation to �nd the best policy of that class� Speci�cally
 we denote by �EX�TR� the

class of exhaustive
 threshold policies de�ned by the pair �y�� y�� which serve both nodes � and �

exhaustively and idle in queue j �� i unless queue i exceeds a threshold yi
 upon which event the

server immediately switches to i� For problems ���
 the queues are symmetrical with respect to

service rate and holding cost
 while in problems ����
 the c� values are not equal� For cases ����

it may make sense to switch from queue � to queue � without exhausting it� For this reason
 we

searched the class of nonexhaustive�threshold policies
 which we denote by �NONEX�TR�� A policy

in this class is described by three variables �y�� y�� y���� For i �� j
 if the server is currently set�up

to serve jobs of type i
 and xi � �
 then the server switches to queue j if
 and only if
 xj � yj �

Finally
 if the server is set�up to process jobs of type � and x� � �
 the server switches to queue �

if
 and only if
 x� � y��� We note that this is a fairly general class of policies for the case of two job

classes� In particular
 our heuristic represents a special case within the class NONEX�TR� Hence

our heuristic can not do better than the best policy found by a very computationally expensive

search over this class of policies� Thus
 the di�erence in performance between our heuristic and the

best policy in NONEX�TR is one measure of the success of the heuristic�

In Table �
 we tabulate the average holding costs per unit time �and �	� con�dence intervals

for the simulation results� under our heuristic policy as well as the other policies� �In the case of

c��� � c���
 we assumed queue � had priority over queue � for the c� rule�� The results in Table

� show that our heuristic performed well� The heuristic outperformed the exhaustive
 gated and

c� rule heuristics� For problems ���
 the queues are symmetrical with respect to service rate and

��

Example c� c� �� �� �� �� ED� ED�

� ��� ��� ��� ��� ��	 ��
 ��� ���
� ��� ��� ��� ��� ��	 ��
 ��� ���
	 ��� ��� ��� ��� ��
 ��	 ��� ���
� ��� ��� ��� ��� ��
 ��	 ��� ���
� ��� ��� ��� ��� ��
 ��� ��� ���

 ��� ��� ��� ��� ��
 ��� ��� ���

 ��� ��� ��� ��� ��� ��
 ��� ���
� ��� ��� ��� ��� ��� ��
 ��� ���
� ��� ��� ��� ��� ��	 ��
 ��� ���
�� ��� ��� ��� ��� ��	 ��
 ��� ���
�� ��� ��� ��� ��� ��
 ��	 ��� ���
�� ��� ��� ��� ��� ��
 ��	 ��� ���
�	 ��� ��� ��� ��� ��� ��� ��� ���
�� ��� ��� ��� ��� ��	 ��� ��� ���

Table �� Input Data for Examples �����

Example Heuristic Exhaustive Gated c� EX�TR NONEX�TR
� ���
 � ���� ���� � ���� ���� � ���	 ���
 � ���� ���� � ���� ���� � ����
� ���� � ���
 ��
� � ���� ��
	 � ���� � ���� � ���
 ���� � ���

	 ���
 � ���� ���� � ���� ���� � ���� ���� � ���� ���
 � ���� ���
 � ����
� ���� � ���� ��
� � ���� ���� � ���� � ��	
 � ���
 ��	
 � ���

� ���� � ���� ���� � ���

��� � ���� ����
 � ��
� ���	 � ���� ���	 � ����

 �
�
	 � ���� ���	
 � ���� 	���� � ���� � �
��
 � ���� �
��
 � ����

 ���� � ���
 ���� � ���

��� � ���� ����� � ���	 ���� � ���
 ���� � ���

� �
�
	 � ���
 ����� � ���� 	��
� � ���� � �
�

 � ��	� �
�

 � ��	�
� ���� � ���� ��	
 � ���� ���� � ���
 ���� � ���
 ��	
 � ���	 ���� � ���	
�� ���� � ��	� ���� � ��	� �	��� � ��	
 �
��
 � ����
��
 � ����
�� ���
 � ���� ���
 � ���	 ��	� � ���� ���� � ���� ���� � ���� ���
 � ����
�� ���� � ���� ���� � ��	� �	��� � ��
� �
��� � ����
��� � ����
�	 	��� � ���� 	�
� � ���� 	��� � ���� 	�
� � ���� 	��� � ���� 	��� � ����
�� ���� � 	�
 ����� � �	�
 ���� � 	�
 ����� � ���� ����	 � ���� 	
�	 � ���

Table �� Results for Examples ����

��

Example c� c� c� �� �� �� �� �� �� ED� ED� ED�

�� � � ��� � � � ��� ��� ��
 ��� ��� ���
�
 ��� ��� ���
�
 ��� ��� ���
�� ��� ��� ���
�� ��� ��� ���
�� ��� ��� ���
�� ��� ��� ���
�� ��� ��� ���
�	 � ��� ��� � � � ���� ���� ���� ��� ��� ���
�� ��� ��� ���
�� ��� ��� ���
�
 ��� ��� ���
�
 ��� ��� ���
�� ��� ��� ���
�� ��� ��� ���
	� � � ��� � � � ��
 ���� ���� ��� ��� ���
	� ��� ��� ���
	� ��� ��� ���
		 ��� ��� ���
	� ��� ��� ���
	� ��� ��� ���
	
 ��� ��� ���
	
 ��� ��� ���
	� � � � � ��� ���� ��� ���� ��� ��� ��� ���
	� ��� ��� ���
�� 	�� ��� ���
�� ��� 	�� ���
�� ��� ��� 	��
�	 	�� 	�� ���
�� ��� 	�� 	��

Table 	� Input Data for Examples ������

holding cost� Hofri and Ross ���� conjecture that an exhaustive
 single�threshold policy is optimal�

Indeed the best exhaustive
 threshold policy �EX�TR� performed as well as any policy tested� In

examples ����
 our heuristic again performed very well and the di�erence between our heuristic

and the best policy found in the class of non�exhaustive threshold policies was in general not large�

Considering the fact that the search for the best threshold policy is a nontrivial computational

problem
 our heuristic
 requiring no search
 performed very well�

We tested our heuristic on a large sample of problems with three di�erent types of jobs� In the

�rst set of test problems �Examples �	����
 the mean processing times of the three di�erent jobs

were the same but their holding costs were di�erent� On the other hand
 in Examples �����
 all

��

jobs have di�erent holding costs and di�erent mean processing times� Examples �	��� represent

systems where the �rm gets a large number of jobs that are not very important �low holding costs�

and a smaller number of urgent jobs� Examples ����� represent systems where the arrival rates

of jobs of di�ering importance are equal� Examples ����� represent systems where the jobs with

higher holding costs also have the higher arrival rates� For each of these sets of examples
 we varied

the set�up times� For Examples �	���
 we again compared our heuristic to the exhaustive
 gated

and c� rules�

The results in Table � indicate that our heuristic easily outperforms all of these widely used

rules� In general
 if the set�up times were high enough
 the exhaustive regime performed well
 and

if the set�up times were close to �
 the c� rule performed well� However
 our heuristic was the only

rule that performed well for all of the problems�

Whereas Examples �	��� have jobs with the same processing times but di�erent holding costs

Examples �	��� have jobs with di�erent mean processing times
 but the same holding cost rates

�see Table 	�� Examples �	�	� represent cases where each of the three queues have the same

utilization� Examples 	���� represent cases where the �rm has a large quantity of jobs that can

be processed very quickly
 and a small number of jobs that require a large amount of processing�

Finally
 Examples ����� represent situations where the �rm spends most of its time processing jobs

that require much processing
 but gets fewer quick jobs�

We test six policies in Examples �	���� These include the heuristic developed in this paper�

the exhaustive
 gated
 and c� rules� as well as two scheduling policies due to Browne and Yechiali

�	�� Browne and Yechiali point out that since the problem of minimizing the sum of �weighted�

waiting times appears to be �computationally hard�
 another objective that can be considered is the

�greedy� objective of minimizing or maximizing the cycle time where the cycle time is the amount

of time it takes the server to visit each queue once� �Since Browne and Yechiali only considered

jobs having di�erent processing time distributions and not di�erent holding costs
 we did not test

their policies in Examples �	����� In particular
 in a symmetric system
 Browne and Yechiali�s rules

for maximizing the cycle time reduce to serving the longest queue �over one cycle�� Since this is

��

Example Heuristic Exhaustive Gated c�
�� ��� � ��
 ���� � ��
 �	�� � ��� ��� � ���
�
 ���� � ��� 	��
 � ��� 	��� � ��	 �

�
 �
�� � ��� 		�� � ��	 	��� � ��� �

�� 	��� � ��
 	��� � ��� 	��� � ��
 �

�� �	�� � ��� 	��� � ��
 	��� � ��� �

�� �
�� � ��� 	��� � ��� ���
 � ��� �

�� ���� � ��� 	��� � ��� �
�� � ��� �

�� ���� � ��� ���� � ��� ���� � ��� �

�	 ��� � ���
�
 � ��	
�� � ��� ��� � ���
�� ���
 � ��� ���� � ��	 �
�� � ��	 �

�� ���� � ��� ���
 � ��	 ���� � ��� �

�
 ���� � ��	 ���� � ��	 ���� � ��� �

�
 ���� � ��� ���� � ��	 �
�
 � ��� �

�� ��� � ��	 ���� � ��� ���� � ��	 �

�� ��� � ��� �	�� � ��� ���	 � ��
 �

	� �
�� � ��� �
�� � ��� 	
�� � ��� �
�� � ���
	� 	
�� � ��� ���	 � ��� ����
 � ��	 �

	� ���� � ��� �
�
 � 	�� ����	 � ��� �

		 	��� � ��� ���� � ��� �
�� � ��� �

	� 	��	 � ��� �
�� � ��� ����� � ��� �

	� ���	 � ��� 		�� � ��� �
�� � ��� �

	
 ���
 � ��
 	��� � ��� ���� � ��� �

	
 ���� � ��� 	��� � ���
	�� � ��� �

	� ���� � ��
 ���� � ��� �
�
 � ��
 ���� � ���
	� ���
 � ��
 �
�� � ��� �
�� � ��	 �

�� �	�� � ��� �
�� � ��� ���� � ��� �

�� �
�� � ��� �
�
 � ��� ���� � ��
 �

�� ���� � ��
 �
�� � ��� ���� � ��
 �

�	 ���
 � ��
 		�� � ��� 	
�
 � ��� �

�� ���� � ��� 	��� � ��� 	��� � ��
 �

Table �� Results for Examples �����

��

Example c� c� c� �� �� �� �� �� �� ED� ED� ED�

�� � � � � � ��� � ��� ����� ��� ��� ���
�
 ��� ��� ���
�
 ��� ��� ���
�� ��� ��� ���
�� ��� ��� ���
�� ��� ��� ���
�� ��� ��� ���
�� ��� ��� ���
�	 � � �
 � ��� 	�
 ��� ���� ��� ��� ���
�� ��� ��� ���
�� ��� ��� ���
�
 ��� ��� ���
�
 ��� ��� ���
�� ��� ��� ���
�� ��� ��� ���

� ��� ��� ���

� � � �
 � ��� ��� ��� ��	 ��� ��� ���

� ��� ��� ���

	 ��� ��� ���

� ��� ��� ���

� ��� ��� ���

 ��� ��� ���

 ��� ��� ���

� ��� ��� ���

Table �� Input Data for Examples ���
��

��

similar to the optimal policy for symmetric systems
 which serves queues exhaustively and switches

to the longest queue once a queue has been exhausted
 we tested the performance of the Browne

and Yechiali rules for maximizing the cycle times� In the exhaustive rule developed by Browne

and Yechiali
 �EXH�BY�
 at the beginning of each cycle
 the server calculates the index
xi�

��
i �EDi

�i

for each queue i
 where �i � �i��i� The server �rst switches to the queue with the highest index�

Once this queue is exhausted
 the indices for the queues that have not been served in that cycle

are recalculated
 and the server switches to the one with the highest index among these remaining

queues in the cycle
 and so on� Once all of the queues have been visited
 the indices are calculated

again� The gated regime developed by Browne and Yechiali �GATE�BY� is similar
 except that

the server ranks the di�erent queues in decreasing order of
xi�

��
i

�����i�EDi

�i
� Browne and Yechiali

showed that these rules maximize the cycle time
 and it is easy to see that for the case where

the queues are homogeneous
 these rules reduce to serving the longest queue among all queues yet

unserved in the cycle� As before
 we found that not switching to an empty queue improved the

performance of the rules
 and thus the rule we implemented prevented switching into empty queues�

The results for Examples �	��� are displayed in Table �� Our heuristic consistently gave the

best results
 sometimes resulting in an average holding cost of 	�� of that of its nearest competitor�

In general
 we found that when a queue with the lower c� value had a high utilization
 �i
 then

the gated rules did better than the exhaustive rule� On the other hand
 if a high c� node also

had a high utilization
 then the exhaustive rules were better than the gated rules since the server

remained at the high reward node until it exhausted it� �It is interesting to note that whereas Levy

et al� ���� have shown that the total workload in the system is less under the exhaustive rule than

under the gated policy
 this result does not extend to the average weighted waiting time criterion
 as

indicated by our simulation results in which the gated policy outperformed the exhaustive rule for

some examples and was outperformed by the exhaustive rule for others�� Our heuristic
 however

consistently gave the best results�

Finally
 examples ����	 demonstrate that the performance of our heuristic does not deteriorate

as the number of queues increase� In these examples
 the system has six queues
 and the holding

��

Example Heuristic Exhaustive Gated c� EXH�BY GATE�BY
�� ��� � ��	 ��� � ��� ��� � ��� ��� � ��� ��� � ��� ��	 � ���
�
 ���� � ��
 �	�� � ��	 ���
 � ��� � �	�
 � ��� ���� � ���
�
 �	�� � ��� �
�
 � ��� ���� � ��� � �
�� � ��� ���� � ��

�� ���� � ��� �
�� � ��� ���� � ��� � �
�	 � ��
 ���� � ���
�� ���� � ��	 ���� � ��
 ���
 � ��� � �
�� � ��
 ���
 � ��

�� ���� � ��
 �
�� � ��� ���� � ��� � �
�� � ��� ���
 � ���
�� �
�� � ��� �
�� � ��� ���� � ��� � �
�
 � ��
 �	�
 � ��

�� ���
 � ��� �
�� � ��� ���
 � ��� � �
�� � ��
 �	�� � ��

�	 ��� � ���
�	 � ��� ��
 � ��� ��� � ���
�	 � ��� ��
 � ��

�� ���� � ��
 ���� � ��� ���� � ��� � ���� � ��� ���� � 	�

�� ���� � ��� �
�� � ���
��� � ��� � ���� � ���
��
 � 	��
�
 ���
 � ��
 ���� � ��� ���� � 	�� � ���� � ��	
	�� � 	��
�
 �
�� � ��� �	�� � ��� ���� � 	�� � �	�� � ���
��	 � ���
�� ���� � ��� �	�� � ��
 ���� � ��� � �	�� � ��
 ���	 � ��	
�� ���
 � ��� �
�� � ��� 	
�� � ��
 � �
�� � ��� 	��
 � ���

� ���� � ��
 �
�� � ��� 	��	 � ��� � �
�� � ��
 ���� � ���

� �	�
 � ��
 	��� � ��� �	�� � ��� ���� � ��� ���� � ��� ���� � ��	

� �
�� � ��
 ���� � ��� ���� � ��� � ���� � 	�� ���� � ���

	 ���� � 	��
��� � ���
��	 � ��� � �
�� � 	��
	�� � ���

� �
�	 � 	��
��� � ���
��� � 	�
 � ���� � ���
	�� � ���

� �	�� � ��

��� � 	��
��� � ��� � ���� � ���
��
 � ���

 	��� � ��	 ����� ��� ���� � 	�� � ���� � ��� ���� � ���

 ���� � ��� ���� � 	�� �	�� � ��� � ���
 � ��
 ���� � ���

� 	��
 � ��� ���� � ��� ���
 � ��
 � ���� � ��� �	�
 � 	��

Table
� Results for Examples ���
�

Example ED� ED� ED� ED� ED� ED� Heuristic Exhaustive Gated

� ��� ��� ��� ��� ��� ��� ��� � ��� ��	 � ��� ��
 ���

� ��� ��� ��� ��� ��� ��� �
�� � ��� ���� � ��� 	��� � ���

� 	�� 	�� 	�� ��� ��� ��� 	��� � ��� 	��
 � ��� ���� � ��	

� ��� ��� ��� 	�� 	�� 	�� ���� � ��
 	
�� � ��� ���� � ���

	 ��� ��� ��� ��� ��� ��� ���� � ��
 ���
 � ��� ���� � ���

� ��� ��� ��� ��� ��� ��� ���� � ��
 ���� � ��� �
�
 � ���

� ��� ��� ��� ��� ��� ��� ���
 � ��

��� � ��� ����� � ���

Table
� Results for Examples
��
�

��

costs for the queues are respectively 	
 �
 ��	
 ���
 ���
 ���� The processing rate is � for all the

queues
 while the arrival rates equal ��� for queues � and � and ��� for all other queues� The mean

set�up times for each queue as well as the average holding cost per unit time obtained under each

policy is displayed in Table �� The results in Table � are representative of the performance of the

heuristic as the number of queues increases� We found that as the number of queues increases
 the

di�erence in the performance of our heuristic and the exhaustive and gated policies increased due

to the server�s having more opportunities to switch to queues with higher reward rates�

�� Conclusions and Further Research

Using notions of reward rate
 we have partially characterized an optimal policy for the scheduling

of parallel queues with set�up times� We used this insight to develop a heuristic policy� Our

simulation study indicates that
 in the case of two queues
 the heuristic performs nearly as well

as computationally expensive search�based rules� In the case of problems with more than two

queues
 our study suggests that the heuristic substantially outperforms other widely used policies

that have been analyzed in the literature� Moreover
 the simplicity of the algorithm enhances its

attractiveness�

Further research is necessary to develop a more complete characterization of the optimal policy�

This would aid in developing new and possibly more e�ective heuristics� This is doubtless a very

challenging problem
 however
 since even in the case of controlling two queues with set�up costs

the optimal policy has not yet been completely characterized� Further research should also address

systems in which a job has to be processed by more than one server and follows a general route

through the system� Such a system without set�up costs has recently been addressed by Wein and

Chevalier �����

Acknowledgments

The work of the �rst author was partially supported by NSF Grant No� DDM��������
 and

that of the second author by Northwestern University Grant 	�����XJ� The authors would like to

thank Professors Demosthenis Teneketzis
 Rajeev Agrawal
 and Awi Federgruen
 as well as two

anonymous reviewers for many helpful comments that have improved the content and clarity of

��

this paper�

Appendix� Proof of Theorem ��

We �rst state a purely technical lemma which we will use in the proof of the theorem� The

proof of Lemma � is straightforward and we omit it�

Lemma �
 Consider a single stage optimization problem with a �nite set of control actions
 U�

Action u � U results in an expected discounted reward �ru � IR and requires an expected discounted

length of time ��u � ������ Let pu � ��� �� denote the probability that action u is taken where

P
u pu � �� Then
 the single�stage reward rate is at most maxu�U �ru���u� equivalently

�
X
u�U

pu�ru���
X
u�U

pu��u� � max
u�U

�ru���u� �A���

Proof of Theorem � for the Discounted Cost Case
 Without loss of generality
 suppose h�

maximizes hn over n� Suppose policy g is optimal but does not serve node one as a top priority

node� We �rst prove that because jobs of type one o�er the greatest single stage reward rate
 an

optimal policy must serve node one exhaustively� We then justify greedy service in node one� For

the sake of presentation
 we initially assume g to be non�randomized and stationary
 and we remove

this restriction later�

Suppose that policy g does not exhaust node one� Thus
 for some state �x�� � � � � xN � �� �� � S

with x� � �
 policy g chooses to switch to node j� We assume
 without loss of generality
 that g

chooses to switch to node j at t � �� thus Ug��� � �j� �� for some j �� �� For l � IN
 let t�l� denote

the time at which the lth control action is taken under policy g� Thus
 t��� � �
 and t��� � Dj �

With respect to policy g
 let the random variable L � fIN
�g denote the stage
 or index of the

decision epoch
 at which g �rst chooses to serve a job of node one� Thus
 Ug�t�L � ��� � ��� ��

and Ug�t�L�� � ��� ��� If g never serves a job in node one with probability p�
 then L takes on

the value � with probability p�� Let the random variable g�l� taking values in f�� �� � � � � N � �g

denote the job
 if any
 served during stage l
 where g�l� � N�� with the probability that the server

�	

idled in or set up any queue during stage l� Thus
 g��� � N � � and g��� � j� Let the random

variable r�g�l�� denote the single stage reward associated with stage l and control selection g�l�

where by �����
 r�g�l�� � cg�l�

��e��fg�l��� for g�l� � N and r�g�l�� � � for the aggregated state

g�l� � N � �� De�ne ��g�l�� � t�l� ��� t�l�� For g�l� � N� ��g�l�� � fg�l����

In accordance with �����
 we de�ne R��g
L��� to be the total expected discounted reward earned

under policy g from stages �� �� � � � � L� � during ��� t�L��� Along each sample path of the system

we construct a policy g
 which interchanges the service of the job in queue one �stage L under g�

with the �rst L� � stages under g as follows� At time t � �
 g serves the job in node one that is

served under policy g at t�L�
 which possesses the processing time f���� During �f���� f���� t�L��
 g

mimics the actions taken by g during ��� t�L��
 the �rst L�� stages� At time t�L��� � t�L��f���

both g and g reach the same state along any realization
 and g mimics g from that point on� Note

that the construction of g is feasible
 and that the average single�stage reward earned by serving a

single job of node one is given by

Efe��f���gc�

�� � h�

����� S�� � h�Ef
Z f���

�
e��tdtg � �A���

Thus
 the di�erence in expected discounted reward of policy g with respect to g results from the

�rst L stages and can be computed from ����� and �A��� as

R�� g�� R��g�

� Efe��f��� �c�

�� � R��g

L����g � �R��g
L��� �Efe��t�L�c�

��e��f���g�

� �h�

����� S�� � S�R��g

L����� �R��g
L��� �Efe��t�L�gh�

����� S���

�
����� S�����Efe��t�L�g��h� �R��g
L�����
�����Efe��t�L�g��� � �A���

Let H�l� be de�ned as the information history vector that records current and past states and

decision epochs� fX�t�i��� t�i� � i � �� �� � � � � lg� Since r�g���� � �
 we see that

R��g
L��� � Ef

L��X
l��

e��t�l�r�g�l��g�
�X
l��

Ef��fL � lge��t�l�Efr�g�l�� j H�l�� L � lg g � �A���

��

Using Lemma � and the de�nition of h�
 it follows that

Efr�g�l�� j H�l�� L � lg�Ef

Z t�l����t�l�

�
e��tdt j H�l�� L � lg � h� � �A�	�

Thus
 �A��� and �A�	� yield

R��g
L��� �

�X
l��

Ef��fL � lgh�Ef

Z t�l���

t�l�
e��tdtjH�l�� L � lgg � h�Ef

Z t�L�

t���
e��tdtg � �A���

Since
����� Efe��t�L�g� � Ef
R t�L�
� e��tdtg and Et��� � �
 it follows from �A��� and �A��� that

R�� g� � R��g�� Repeated application of the preceding argument at every point of non�exhaustive

service at node one establishes the optimality of exhaustive service at node one�

The preceding construction applies to a randomized and!or nonstationary policy g as well� For

example
 g is randomized and chooses with probability p to leave queue one nonexhaustively at a

given instance
 the policy g is simply speci�ed to incorporate the interchange with probability p�

A similar argument establishes the optimality of greedy service at node one� Suppose that at

time t � �
 policy g idles the server in node one
 and that after some random number of stages L��

policy g �rst serves a job in node one at time t�L�� Because a zero reward rate is earned during

the �rst stage under g
 and subsequent single�stage reward rates cannot exceed h�
 the modi�ed

policy g as previously constructed performs strictly better than g� �

Proof of Theorem � for the Average Cost Case

The argument is similar to the proof for the discounted cost case
 so we present the di�erences�

Let queue one maximize ci�i and de�ne as before the initial condition at t � �
 L �a random

variable�
 policies g and g
 t���
 g���
 and ��g����� Because g is assumed optimal
 we recall that

�J�g� � � and the lim sup in ����� reduces to a lim for g and any other policy � g� of no greater

cost� We �nd that if L � � with strictly positive probability
 then t�L� � � with strictly positive

probability and it can be shown that �J�g� � �� Thus policy g cannot be optimal because stable

policies exist
 and L is �nite with probability �� Instead of comparing g and g using rewards

and reward rates
 we use the cost formulation directly� For our construction
 policies g and g are

coupled at time t�L� �� � t�L� � f��� and incur identical costs thereafter� Thus
 we compare the

expected cumulative costs incurred by g and g prior to t�L � ��� We note that each job served

��

during �t���� t�L�� under g is delayed by f��� time units under g
 which represents an increased cost

for g� On the other hand
the �rst job in queue � is completed at time f��� under g and at t�L��f���

under g
 a cost savings of c�t�L� for g�

To compare the di�erence between g and g
 we de�ne the costs associated with the stages

�� �� � � � � L prior to the coupling of g and g� Let the holding cost of the stage l action be denoted

by C�g�l��
 where C�g�l�� � cg�l� for g�l� � N and C�N � �� � �� Because C�N � �� � �
 for our

purposes
 it su
ces to note that for the aggregated state N � �� ��N � �� has a �nite mean� We

note that g��� � N � �� From time t�L� �� onwards
 g has an expected cumulative �not average

cost per unit time� cost advantage over policy g
 which we denote as Z�g� g�� Thus

Z�g� g� � Ef

Z �

�

NX
n��

cn
�
Xg
n�t��X	g

n�t�
�
dtg �A���

� Efc�t�L��
L��X
l��

C�g�l��f���g �A���

�
�X
l��

Ef��fL � lg�c���g�l��� C�g�l��f����g� c�EfDjg �A���

�
�X
l��

Ef��fL � lg�c�Ef��g�l��jH�l�� L � lg � EfC�g�l��jH�l�� L � lgEff���g�g � �A����

where we have used the fact that f��� is independent of all else� To conclude that Z�g� g� � �����

it su
ces to show that for l � f�� �� � � � � L� �g

EfC�g�l��jH�l�� L � lg�Ef��g�l��jH�l�� L � lg � c��Eff���g � c��� � �A����

This follows from Lemma �� There exists a perturbation of g that serves a single additional job

of queue one at the �rst instance of non�exhaustion and results in an expected cumulative cost

savings in ������ If
 following the job of queue one inserted at time t��� � �
 additional jobs

remain in queue �
 apply the argument thus far iteratively until the resulting perturbation of g

say g�
 exhaustively serves queue � during the visit at t���� Thus
 Z�g� g�� � ������

To conclude
 we build on this result to show that a top�priority policy exists which performs at

least as well as g with respect to average cost per unit time� Consider a policy g�� with a countable

number of stages� The nth stage removes the nth instance of non�exhaustion of queue �� The

sequencing of jobs not in queue � is una�ected� Note that our construction implies Z�g� g��� � �����

��

and since �J�g� � �����
 it follows that �J�g��� � ������ There exists a policy that always exhausts

queue one and performs at least as well as any other policy in G�

The proof of the greedy property follows using the argument made in the discounted case
 now

extended as above to the average cost case� �

Bibliography

��� Altman� E�� Konstantopoulos� P�� and Liu� Z� ������ Stability� monotonicity and invariant quantities in
general polling systems� Queueing Systems ��� 	���
�

��� Baker� J�E� and Rubin� I� ����
� Polling with a general�service order table� IEEE Trans� Comm�COM�

��� ��	�����

�	� Baras� J�S�� Ma� D�J�� and Makowski� A�M� ������ K competing queues with geometric service require�
ments and linear costs� the �c rule is always optimal� Systems Control Letters� �� �
	�����

��� Bell� C� ���
�� Characterization and computation of optimal policies for operating anM�G�� queueing
system with removable server� Operations Research ��� ��������

��� Browne� S� and Yechiali U� ������ Dynamic priority rules for cyclic�type queues� Advances in Applied
Probability� ��� �	������

�
� Buyukkoc� C�� Varaiya� P�� andWalrand J� ������ The c��rule revisited� Advances in Applied Probability�
�	� �	
��	��

�
� Conway� R�W��Maxwell� W�L�� and Miller� L�W� ���

�Theory of Scheduling� Addison�Wesley� Reading�
MA�

��� Cox� D�R� and Smith� W�L� ���
�� Queues� Methuen� London�

��� Dempster� M�A�H�� Lenstra� J�K�� and Rinnooy Kan A�M�G� ������ Deterministic and Stochastic
Scheduling� D� Reidel� Dordrecht�

���� Federgruen� A� and Z� Katalan ����	a� �The stochastic economic lot scheduling problem� Cyclical base�
stock policies with idle times�� Working paper� Graduate School of Business� Columbia University� New
York� NY�

���� Federgruen� A� and Z� Katalan ����	b� �The impact of setup times on the performance of multi�class
service and production systems�� Working paper� Graduate School of Business� Columbia University�
New York� NY�

���� Georgiadis� L� and Szpankowski� W� ������ Stability of Token Passing Rings� Queueing Systems� ���

�	��

��	� Gittins� J�C�� ������ Multi�armed Bandit Allocation Indices� Wiley� New York�

���� Gupta� D�� Gerchak� Y�� and Buzacott J�A� ����
� On optimal priority rules for queues with switchover
costs� Preprint� Department of Management Sciences� University of Waterloo�

���� Harrison� J�M� ���
�a� A priority queue with discounted linear costs� Operations Research ��� �
���
��

��
� Harrison� J�M� ���
�b� Dynamic Scheduling of a Multiclass Queue� Discount Optimality� Operations
Research ��� �
������

��
� Hofri� M� and Ross� K�W� ����
� On the optimal control of two queues with server set�up times and its
analysis� SIAM Journal of Computing� ��� 	�������

��

���� Klimov� G�P� ���
�� Time sharing service systems I� Theory of Probability and Its Applications� ���
�	������

���� Klimov� G�P� ���
�� Time sharing service systems II� Theory of Probability and Its Applications ���
	���	���

���� Kuehn�P�J� ���
�� Multiqueue systems with nonexhaustive cyclic service� Bell Syst� Tech� J� �
�

��
���

���� Lai� T�L�� and Ying� Z� ������ Open bandit processes and optimal scheduling of queueing networks�
Advances in Applied Probability� ��� ��
��
��

���� Levy� H� and Sidi� M� ������ Polling systems� applications� modelling� and optimization� IEEE
Trans� Commun� �
� �
����

��

��	� Levy� H�� Sidi� M�� and Boxma� O�J� ������ Dominance relations in polling systems� Queueing Systems
�� �����
��

���� Liu� Z�� Nain� P�� and Towsley� D� ������ On optimal polling policies� Queueing Systems �QUESTA�
��� ������

���� Nain� P� ������ Interchange arguments for classical scheduling problems in queues� Systems Control
Letters� ��� �

�����

��
� Nain� P�� Tsoucas� P�� and Walrand� J� ������ Interchange arguments in stochastic scheduling� Journal
of Applied Probability �	� ������
�

��
� Rajan� R� and Agrawal� R� ������ Optimal server allocation in homogeneous queueing systems with
switching costs� preprint� Electrical and Computer Engineering� Univ� of Wisconsin�Madison� Madison�
WI �	
�
�

���� Santos� C� and Magazine� M� ������ Batching in single operation manufacturing systems� Operations
Res� Letters �� �����	�

���� Srinivasan� M�M� ������ Nondeterministic Polling Systems� Management Science �	

�

�	�� Takagi� H� ������ Priority queues with set�up times� Operations Research �
�

�

�

�	�� Van Oyen� M�P� ������ Optimal Stochastic Scheduling of Queueing Networks� Switching Costs and
Partial Information� Ph�D� Thesis� University of Michigan�

�	�� Van Oyen� M�P�� Pandelis� D�G�� and Teneketzis� D� ������ Optimality of index policies for stochastic
scheduling with switching penalties� J� of Appl� Prob�� ��� ��
��

�

�		� Van Oyen� M�P� and Teneketzis� D� ������ Optimal Stochastic Scheduling of Forest Networks with
Switching Penalties� Adv� Appl� Prob�� ��� �
����
�

�	�� Varaiya� P�� Walrand� J�� and Buyukkoc C� ������ Extensions of the multi�armed bandit problem� IEEE
Transactions on Automatic Control� AC���
 ��
��	��

�	�� Walrand� J� ������ An Introduction to Queueing Networks� Prentice Hall� Englewood Cli�s�

�	
� Wein� L�M� ������ Due date setting and priority sequencing in a multiclass M�G�� queue� Management
Science �	� �	������

�	
� Wein� L�M�� and Chevalier P� ������ A broader view of the job shop scheduling problem� Management
Science �
� �������		�

��

