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Hospitals typically lack effective enterprise level strategic planning of bed and care resources, contributing

to bed census levels that are statistically “out of control.” This system dysfunction manifests itself in bed

block, surgical cancelation, ambulance diversions and operational chaos. This is the classic Hospital Admis-

sion Scheduling and Control (HASC) problem, which has been addressed in its entirety only through inexact

simulation-based search heuristics. This paper develops new analytical models of controlled hospital census

that can, for the first time, be incorporated into a Mixed Integer Programming model to optimally solve the

strategic planning/scheduling portion of the HASC. Our new solution method coordinates elective admissions

with other hospital subsystems to reduce system congestion. We formulate a new Poisson-arrival-location

model (PALM) based on an innovative stochastic location process that we developed and call the Patient

Temporal Resource Needs (PATTERN) model. We further extend the PALM approach to the class of deter-

ministic controlled-arrival-location models (d-CALM) and develop linearizing approximations to stochastic

blocking metrics. This work provides the theoretical foundations for an efficient scheduled admissions plan-

ning system as well as a practical decision support methodology to stabilize hospital census.
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1. Introduction

The classical Hospital Admission Scheduling and Control (HASC) problem identified the late 1970’s

addresses one of the major systemic failures in hospital care delivery, census variability, through

better strategic planning of inpatient admissions. Solution methodologies to reduce this variability

are often referred to as census smoothing. In this work we solve the elective inpatient (by which

we mean all admissions that are scheduled in advance rather than emergency) strategic scheduling

portion of the HASC problem to optimality. Our collaborations with multiple hospitals across three

continents enable a broad validation of our approach, models, and results. Our HASC optimization

creates a strategic plan, analogous to block scheduling, that allocates a specific number of slots

each day for each patient type (similar to allocating a certain number of hours of Operating Room

(OR) time to each service each day) over a planning horizon to be filled by admissions personnel

scheduling according to the plan.

From Practice to Theory: A Scientific Approach to the HASC Planning Problem.

The work in this paper was developed during more than four years of collaborative research with

hospitals around the world. We have worked with both large and medium sized hospitals and

teaching and non-teaching hospitals in the United States, Netherlands, Singapore, and Canada. The

causes and consequences of census variability detailed below, along with the classic census patterns

that lead to systemic hospital congestion, were observed to be similar in every case. This suggests

that the problem we address is a global one that, despite the many differences across hospitals and

healthcare systems, occurs with remarkable consistency. For the purposes of cohesive exposition,

we draw our examples from and develop a complete analysis for one hospital in particular, though

the model is validated across all 4 hospitals. Our partner hospitals have agreed that this approach

merits development and implementation as a path toward the hospital of tomorrow.

Consequences of Census Variability. Hospital census variability is problematic throughout the

world and impacts cost, access, quality and safety in healthcare delivery. Studies show that census

variability leads to overcrowding of the Emergency Department (ED), Intensive Care Unit (ICU),

and Post Anesthesia Care Unit (PACU) resulting in increased mortalities, compromised quality of

care, emergency patient diversions, and significant excess cost (see Keehan et al. (2007), Sprivulis

et al. (2006), Richardson (2006), Derlet et al. (2001), Harrison et al. (2005), McManus et al. (2003),

Proudlove et al. (2003), Richardson (2006), Fatovich et al. (2005), Hoot and Aronsky (2008), and

Forster et al. (2003)). Census variability also contributes to overloaded nurse staff, which is linked

to patient mortality, nurse burnout and job dissatisfaction (see Aiken et al. (2002)). High levels

of congestion also cause hospitals to divert overflow patients into non-preferred “off-ward” beds,
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which we call Type 1 blocking (see Sec. 4.1). Patient safety, however, is not well served by placing

patients off-ward and the practice increases nurse stress, job dissatisfaction, and turnover (see

Anderson et al. (1988), Brownson and Dowd (1997), and Kane et al. (2007)).

Figure 1(a) is a census time series from a partner hospital that illustrates typical census vari-

ability. Furthermore, most hospitals also exhibit a pattern of a mid-week census spike followed

by a sharp drop in census on Saturday and Sunday (see Fig. 1(b)). This weekly census “hump”

contributes to hospital overcrowding despite a modest average census (the dotted line in Figure

1(b)).
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(a) Census variation over time (b) Weekly occupancy pattern

Figure 1 Census variability shown in hospitals over (a) ∼ 6 mo. and (b) ∼ 1 mo.

Causes of Census Variability. It is well known that both a weekly pattern in elective admissions

(see Figure 2(a)) and the week-to-week variation in number of elective admissions on a given day

(see Figure 2(b)) significantly contribute to both the weekly census hump and the week-to-week

variation in census, leading to hospital congestion and patient blockages (see Bekker and Koeleman

(2010)). Table 1 demonstrates the magnitude of variability in the number of elective admissions by

day of week (DOW). It may be surprising to note that elective admissions actually exhibit higher

coefficient of variation (i.e. standard deviation divided by mean) on many days than emergency

admissions. The scheduling portion of HASC can be defined in terms of the objective, stabilizing

hospital census, and system controls, elective admission scheduling. In the following sections we

describe an analytical model of the system dynamics that links the control decisions to the objective

and allows for Mixed Integer Programming (MIP) optimization methods.

The paper is outlined as follows. Sec. 2 describes the current state of census smoothing research,

Sec. 3 develops a stochastic model for hospital workloads across a network of resources, and Sec.

4 transforms the stochastic model into a linear MIP to generate optimal admission schedules.
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Figure 2 Variability in elective admissions over the course of one year.

Category DOW Std. Dev. Mean CV
Emergency Elective Emergency Elective Emergency Elective

Hospital Total Sun 8.44 5.51 48.23 16.57 0.18 0.33
Hospital Total Mon 13.23 32.98 64.79 117.32 0.20 0.28
Hospital Total Tue 11.64 17.98 62.17 142.26 0.19 0.13
Hospital Total Wed 10.59 23.88 57.53 114.79 0.18 0.21
Hospital Total Thu 13.89 28.93 58.02 142.04 0.24 0.20
Hospital Total Fri 10.96 20.49 64.79 101.09 0.17 0.20
Hospital Total Sat 8.94 4.76 52.69 12.83 0.17 0.37

Table 1 Variation in numbers of total elective and emergency admissions by day of week (DOW).

2. Smoothing Hospital Census

Hospitals that increase throughput (achieved through better resource usage) can provide better

access to their community at a lower cost, provided they limit patient blockages. To smooth hospital

census, the hospital must address both (1) the census mid-week “hump” and (2) weekly variability

in admissions. The key to smoothing hospital census lies in modeling the downstream ward/bed

requirements for admitted patients building toward a stochastic process capturing ward census

levels over time for any particular mix and volume of patient admissions.

The importance of census levels and census variability to admission decision making has been

studied in several contexts. Connors (1970) uses stochastic patient flow models to link admissions

decisions with hospital census. Harrison et al. (2005) uses simulation to show that census variability

in combination with high census levels increases the risk of hospital overcrowding. Jun et al.

(1999) argues that effective patient flow management can benefit the hospital through high patient

throughput, low patient wait times, short length of stay (LOS), and low clinic overtime.

To effectively solve the Hospital Admission Scheduling and Control (HASC) Problem, models

must incorporate control/scheduling decisions into census forecast models. Early work in this area

began in the late 1970’s with Hancock and Walter (1979, 1983) and Griffith et al. (1978). These
4



early approaches took a comprehensive simulation modeling approach to capture entire patient care

pathways through the network of wards that comprise the hospital. Schedule improvement relied

on a simulation-based heuristic approach to modeling the impact of admissions on census levels.

Using simulation, the landmark work of Hancock and Walter (1983) designed and implemented an

inpatient admissions scheduling and control system to achieve high average census subject to con-

straints on the number of cancelations and emergency patient blockages. Gallivan and Utley (2005),

Gallivan et al. (2002), Chow et al. (2011), Adan et al. (2009), Bekker and Koeleman (2010) have

all studied the impact of elective admissions on census levels in various wards, optimizing schedules

with MIP models. Recently, Harper (2002) and Helm et al. (2009) used simulation frameworks to

improve scheduling decisions for better hospital resource usage.

Helm et al. (2011) presented a Markov Decision Process (MDP) approach that focuses on the

control side of the HASC problem to dynamically manage an inpatient call-in queue and elective

surgery cancelation. It also showed via simulation that it can be effective to manage the scheduling

side of the HASC problem.

Given the significant impact that elective scheduling has on system performance, this paper

makes a contribution by (1) developing analytical census modeling methods, rather than simulation-

based methods and (2) embedding them in a non-heuristic optimization to solve a model of the

scheduling side of the HASC problem and to yield important managerial insight. Past work has

either been simulation based, or has not considered the full HASC system dynamics. For example,

the MIP papers focus on a single ward or isolated feedforward subset of hospital resources. The

scope of our work includes modeling the entire hospital, full patient care trajectories, and census

levels by ward; moreover it includes the more realistic generalized network dynamics of the hospital

wards and the use of flexible wards to serve patients off-ward. In short, we are able to solve a

scheduling model of the complete HASC problem using non-heuristic optimization methods. To

better capture the hospital dynamics, we model the hospital as a general network of interacting

wards/units, incorporating the two primary types of interaction between wards that were not

previously considered: (1) transfers between different wards within the hospital as a result of a

change in the patient’s condition and (2) off-ward servicing when a patient’s preferred ward is full.

Ignoring the off-ward and inter-ward transfer mechanisms omits critical dynamics of hospital

system functioning. In one of our partner hospitals 56% of patients transfer wards at least once

during their hospital stay, and among patients who transfer, the average is 1.6 transfers per visit.

Considering only the first ward, or a feed-forward subset of wards, ignores a significant load that

patients place on other hospital resources. Additionally, the percent of off-ward patients is often
5



quite significant; even in one of the better managed hospitals we worked with, around 17% of

patients were located off-ward.

A primary contribution of this paper is in linking models that optimize system-level objectives to

stochastic models of patient flow using complete patient trajectories through a network of hospital

wards and the modeling of ward interaction mechanisms. Our main purpose is to develop a medium

or long term plan for what mix and volume of patients to admit over time.

3. Characterization of the Stochastic Census Process

Figure 3(a) illustrates our methodological approach. We model the hospital as a network of inter-

acting wards. The primary resource modeled is the hospital beds, differentiated by ward. The model

uses the detailed temporal resource requirements via a data-driven network patient flow model to

inform elective admission decisions while accounting for the resource requirements of the emer-

gency patients. We show that it is possible to determine the volume and mix of elective patients

that will generate a stable workload and minimize blockages and cancelations while maintaining

or increasing patient throughput.
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(a) Conceptual patient flow model (b) Cardiology patient flow path

Figure 3 Models of patient flow through a network of hospital wards.

This section develops offered-load models of hospital census that will incorporate corrections

for cases where a patient is denied admission to a full hospital (Type 2 blocking) or where they

are placed “off-ward” because the preferred ward is full (Type 1 blocking). As a foundation we

first characterize the patient trajectories for each patient type. While many different definitions

of patient types may be used, we consider patient type to be the patient’s admitting service

(e.g. cardiac, gastrointestinal, neurology, etc.), because this fits with typical hospital scheduling
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structures. We generate a probabilistic flow model of the resources (beds) used by a patient of a

given type over their entire stay in the hospital. Figure 3(b) (corresponding also to Table 2) shows

the expected load (which is also a probability) a cardiology patient places on hospital wards over

the course of their treatment, where the y dimension indicates days after admission.

Using these trajectories we can characterize both the elective census process and the emergency

census process to model the total census levels in each ward for a given elective admission schedule

by day of week. In Sec. 4, these census processes are linked to elective admission decision variables

in an optimization model to determine the optimal mix and volume of patients over time subject

to system performance constraints, including bed block.

The remainder of this section proceeds as follows. In Sec. 3.1 we discuss the design of the

proposed elective admission scheduling system as well as modeling assumptions. Sec. 3.2 introduces

our stochastic model regarding how patients move through the network of hospital wards over the

course of their treatment and presents a method for extracting a patient’s preferred ward from the

data when patients are placed off-ward. Sec. 3.3 combines the stochastic model of patient flow from

Sec. 3.2 with a Poisson arrival stream to create a stochastic model of hospital and ward workload.

Sec. 3.4 extends this analysis to a broader class of arrival streams, that includes deterministic

arrival streams, to model the more controlled arrival of elective patients. Finally, combining the

elective and emergency workload models yields a model for the total ward and hospital census,

which is validated for accuracy using historical data from four different hospitals in Sec. 3.5.

3.1. System Design and Assumptions

The decision variables (the number of patients of each type to admit on each day of the admission

cycle) provide admission targets (number of slots) for each service, similar to the way that allocating

surgical block time manages OR case mix. These slots will be filled by the various admissions

personnel until the maximum number of patients of that type for a given day is reached. Patients

that cannot be scheduled on a given day will be scheduled into empty slots on subsequent days.

This mechanism coordinates a previously decentralized admissions scheduling process.

In high demand hospitals, like the four that we study in this paper, elective inpatient services

have substantial waiting lists and thus it is reasonable to assume that these planned slots could be

filled every week. A management challenge lies in changing the culture to stabilize the number of

admissions from week to week. The operational mechanism of assigning admission maximums by

day of week, if followed, will inherently reduce the fluctuation in admissions over time.

By using a deterministic arrival stream model, we are capturing the results if the plan is followed

accurately and the admission plan is filled each week. It is important to note that, as this is
7



a strategic planning model, the elective decision variables represent the planned admissions and

neither (1) an uncontrolled arrival of requests for elective admissions or procedures, nor (2) how the

admission slots dynamically get filled. The dynamic management of the admissions system is left

to the control portion of HASC (see for example Hancock and Walter (1983), Helm et al. (2011)).

Instead, we allocate slots that set an optimal mix and volume of patient admissions and allow

admissions personnel the flexibility of filling those slots with any patient that matches the criteria

for the slot (much like OR block scheduling). Using our modeling framework it is also possible to

capture deviations from the plan (see Sec. 3.4.3) modeled using various non-deterministic arrival

streams.

In our admission plan design, we model a repeating admission cycle (e.g. a week) and, when the

system goes beyond the cycle length, the admission plan is repeated exactly as before. It should

be noted that the modeling framework is general and can work in a variety of contexts including

situations with seasonality and scenarios that are not cyclic. While non-cyclic systems and systems

with seasonality can be modeled as well, a weekly cyclo-stationary model matches the natural

weekly cycle of almost all hospitals (e.g. planned clinic times, OR time, research time).

In traditional queueing network models, customers that are blocked stop receiving service while

they wait for a server at the next station to free up. In contrast, when patients are blocked from their

preferred ward, they continue to receive service while residing off-ward with only a small increase

(∼0.5 days) in LOS. The infinite capacity offered load model we develop captures this phenomenon

of receiving service continuously while in the hospital. In Sec. 4 we further superimpose capacity

constraints on the offered load model to capture the volume of off-service patients and the rate at

which patients are blocked from entering the hospital altogether (e.g. ambulance diversion). This

technique has been used successfully in other applications (e.g. the modified offered load approach

of Massey and Whitt (1994b) has been used extensively). The workload from patients that are

blocked from the hospital entirely is removed from the workload estimates. Thus we only capture

patients that are in the hospital and once in the hospital, the patient continues to be “served” until

they leave. This approach models true patient flow dynamics far better than traditional queueing

network blocking models or loss models.

Our model uses 1 day as the time step (though any time step can work), because we anticipate

our elective admissions system being used most often at a daily granularity to give flexibility and

decision making power to admissions personnel, increasing the likelihood of acceptance of our

coordinated strategic plan.
8



3.2. Development of the PATTERN Stochastic Location Process Model

To understand the effects of scheduling decisions and emergency arrivals on census levels across the

network of hospital wards, consider as a foundational model the resource (bed) requirements of a

single patient over the course of their treatment, which we call Patient Temporal Resource Needs

(PATTERN). To describe the flow of patients through hospital wards, we develop a stochastic

location process model in the spirit of Massey and Whitt (1993, 1994a). Some applications and

extensions of this approach include Leung et al. (1994) and Liu and Whitt (2011). Let W be the

set of wards and D be the set of patient types. The state space for the location functions can

be defined as S = W ∪
{

∆∗,∆∗
}

, where state u represents a patient being in ward u, state ∆∗

represents the state where the patient has left the hospital (i.e. discharged) and ∆∗ represents

the state where the patient has not yet arrived at the hospital. Patients move through the state

space according to the S-valued stochastic location process
{
Ls,k(t) : s∈R, k ∈D

}
, where k is the

patient type, s is the arrival time and t > s is the time of interest. For notational convenience we

let S = S0∪{∆∗,∆∗}, so that S0 represents the locations within the hospital. Thus Ls,k(t) denotes

the location of a patient at time t given that the patient was admitted at time s.

Remark 1. Bed capacity is not explicitly represented in this stochastic location process; however,

the location process is constructed from data that reflects actual flows observing the bed capacity

constraints (even at the ward level). For hospitals with significant capacity constraints we view the

data as congestion-contaminated, and Theorem 1 will provide a tool to estimate the ideal flows,

free of off-ward placement or rejection from the hospital (Type 1 and Type 2 blocking).

Remark 2. The fact that Ls,k(t) can depend on s enables the modeling of the key hospital feature

that the length of stay and care path can depend on the time of admission.

To characterize the stochastic location process, let Σs be the set of right-continuous functions

with left limits for patients that first enter the hospital S0 at time s. Thus, Σs represents the

set of all possible sample paths of the stochastic location process Ls,k(t). An element σs ∈Σs is a

(deterministic) mapping σs :R→S such that σs(t) represents the location of the patient at time t.

Figure 4 represents three different sample path functions. The solid line represents path σs1(t), a

sample path of the process Ls1(t), the dashed line represents the path σs2(t), a sample path of the

process Ls2(t), and the dotted line represents the path σs3(t), a sample path of the process Ls3(t).

Path σs2(t), for example, represents a patient who arrives at time s2 at ward 1, transfers to ward

3 for a brief stay, and then returns to ward 1 before being discharged slightly before time t. Note
9
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Figure 4 Illustration of Ls,k(t) for three sample care paths.

that a location function σ ∈ Σs is a right-continuous step function that takes values in S0 over a

continuous interval [s,Ts) for some finite Ts and that σ(t) = ∆∗ for t < s and σ(t) = ∆∗ for t≥ Ts.

We let the entire function space Σ be the collection of all Σs. For any subset Γ ⊆ Σ, let the

associated probability measure, Ps(Γ), represent the probability of realizing one of the location

functions in Γ, assigning 0 measure to any location functions in Γ that did not begin at time s

(the time of the patient’s arrival). Thus Ps(Σs) = 1 and Ps(Σt) = 0 for t 6= s. Ps(·) characterizes the

dynamics of the stochastic location process, Ls,k(t). For our model, this measure is used to find the

probability that a patient is in ward u at time t, given that they arrived at the hospital at time s.

To do so, we define a set of location functions and then the measure on that set as follows. The

measure of the set of location functions that indicate that the patient is in ward u at time t is the

probability of the patient being in ward u at time t. This set can be written as

Γt,u =
{
σs ∈Σs : s≤ t and σs(t) = u

}
, (1)

which captures the set of all location functions that place a patient in ward u at time t. Of course

to be in the hospital at time t, the patient must have arrived before time t. Moreover, we require

that the patient not remain in the hospital forever (consistent with Massey and Whitt (1993)). As

mentioned, the specific measure of this set is defined by the dynamics of the stochastic location

process Ls,k(t). We avoid the semi-Markov process because the solution to such processes for general

distributions and general transition functions is often intractable, requiring further approximations.

Rather, we define for each patient type, k, a specific stochastic location model with probability

measure Ps,k as:

Ps,k
(
Γt,u

)
= pk,us (t− s), (2)

Ps,k
(
Γt,∆∗

)
= pk,∆

∗

s (t− s) = 1−
∑
u∈W

pk,us (t− s), (3)

10



where pk,us (t) is the probability that a patient of type k who arrives at time s is in ward u, t time

periods after their arrival.

For each patient type, we calculate the proportion of the total population present in each ward (or

discharged) for each discrete time step (see for example Table 2). It is often the case that some of the

historical hospital data captures the hospital’s reaction to congestion (e.g. “off-ward” placement)

rather that the patients’ ideal flows. The simple solution is to take patient data only from periods

when the hospital is not congested so that blocking and off-ward placement is minimal. Even high

demand hospitals have some periods of low congestion; however, this approach requires a longer

period of data. In general, we propose the following approach to correct for data contamination.

Congestion impacts two aspects of patient flow post-admission: length of stay and ward place-

ment. Under standard procedures, no patients are forced out of the hospital by blockage once

they have been admitted. Off-ward servicing during the entire hospital stay only increases LOS

by around half a day (see Anderson et al. (1988)), so this perturbation is not significant at the

strategic planning level we are investigating. Thus, off-ward placement is the congestion effect we

correct for to extract true patient flows from congestion-contaminated hospital data.

We model both observed flows and true flows, distinguished notationally by adding a hat ˆ on

top of the parameter to associate it with the true quantity. The four hospitals we worked with used

overflow wards and overflow/blocking routing policies to manage congestion. Therefore, the set of

wards, S0, can be partitioned into specialized wards, ξ ⊆S0, and overflow wards ψ = S0\ξ. Let ai

represent the arrival rate to ward i and pi,j be the probability that a patient who completes service

in ward i transitions next to ward j. Let β̂i represent the blocking probability in ward i.

To discover the true flows, we relate the traffic equations of the true flows in the underlying flow

system to the flow model observed in the hospital data. Each patient type has its own arrival rates

and transfer probabilities, but for the sake of exposition, we initially suppress the dependency of

these parameters on patient type. The system of equations below can be easily extended to include

arbitrarily many patient types.

ai = âi(1− β̂i) for i∈ ξ (4)

pi,j = p̂i,j(1− β̂j) for i, j ∈ ξ (5)∑
k∈ψ

pi,k =
∑
j∈ξ

p̂i,jβ̂j for i∈ ξ (6)

In Eq. 5, the observed transfer probability from i to j is the true transfer probability multiplied

by the proportion of time the patient is able to enter the ward (i.e. unblocked). Eq. 4 follows
11



similar logic. Eq. 6 means that the total probability of transitioning into the overflow ward is

the sum of all the between-ward transitions that were blocked. Eq.’s 4 - 6 represent a non-linear

system of equations with n variables and n unknowns after patient types are included. Let P =

[pi,j] be the observed ward transition matrix and let P ξ be the its submatrix that represents the

transitions between specialized hospital wards, i.e. {pi,j : i, j ∈ ξ}. Let Pψ =
∑

i∈ψ Pi where Pi is the

ith column vector. In words, Pψ represents the probability of transitioning from a specialized ward

into any of the overflow wards, i.e. {
∑

j∈ψ pi,j : i ∈ ξ}. By transforming the non-linear system into

an equivalent linear system, we show that the traffic equations have a unique solution obtained by

matrix inversion (proved in the Online Appendix).

Theorem 1. Given P ξ has full rank, the traffic equations given by Eq.’s 4 - 6 have a unique

solution given by

γ = (P ξ)−1Pψ, β̂i =
γi

1 + γi
, âi =

ai

1− β̂i
, p̂i,j =

pi,j

1− β̂j
. (7)

If the transition probability matrix, P ξ, does not have full rank (i.e. if any rows of the matrix

are linearly dependent) then we can break the matrix into sub-matrices of full rank by extracting

rows that cause linear dependence and then applying Theorem 1 to each cluster separately.

To validate our method, we developed a simulation model of admissions, blocking, and off-ward

placement to generate congestion contaminated census process realizations from one year’s worth

of data. This enabled us to compare the results from our decontamination method with a known

true demand distribution. We simulated three ward hospitals because three wards are considered

sufficient to capture the rich network structure of interest and this structure is often used in

the patient flow literature. We designed a test suite of 1,000 cases with the hospital parameters

generated randomly. We used the following parameterizations. Patient LOS for each patient type

was log-normally distributed with mean (in days) and variance parameters randomly chosen from a

Uniform(2,8). The ward sizes were chosen from a Uniform(8,60) distribution. Transfer probabilities

were Uniform(0,1) for each pair of wards. Random arrival rates were generated also according

to a uniform, but with attention to creating a stable queueing system. Using the simulation, we

generated congestion-contaminated “observed” data and then used Theorem 1 to estimate the

underlying flow parameters and compared our estimate with the true parameters used to design

the simulation.

The primary quantity needed to estimate a patient’s true care pathway is the transfer prob-

ability, which had a small 0.1% average absolute error across the test suite. The the blocking
12



probability and arrival rate estimates, also had small errors 1.0% average absolute error and 1.5%

average absolute percent error respectively. As three ward structures are taken to be representa-

tive in the patient flow literature, we expect the results to be similar for other systems. The high

level of accuracy demonstrated with our large test suite supports the claim that our method is

capable of identifying true care needs from congested historical data, enabling contamination-free

parameterization of the location processes.

Once the true system dynamics have been calculated, Thm. 1 can be used in a preprocessing step

(prior to calculating patient path probabilities) to adjust the patient pathways for each individual

patient type to reflect each patient’s true demand by removing congestion contamination. We begin

by noting that the hospital’s raw data accurately represents each patient’s desired ward (true

demand) except when a patient enters an overflow ward as an off-unit patient. This is where Thm.

1 is needed to correct for the congestion that forced the patient into overflow wards by capturing

which ward the patient was trying to enter (their preferred ward for that segment of treatment)

when they were forced into the overflow ward due to lack of capacity. To estimate the patient’s

preferred ward in such a situation, we replace the line in the raw data that has one in the overflow

ward and zero in all other wards (e.g. Row 2 of “Congestion Contaminated Data” in Fig. 5) with a

set of probabilities across all specialized wards: P(Ward u is the patient’s preferred ward) for each

u∈ ξ (e.g. Row 2 of “Preferred Ward Transformation” in Fig. 5).

If a patient moves to the overflow ward as a result of a transfer from ward i, then P(Ward u

is the patient’s preferred ward | the patient was blocked) = p̂i,uβ̂u/
∑

j∈ξ p̂i,jβ̂j where p̂i,j is the

true probability of transferring from ward i to ward j and β̂u is the blocking probability in Ward

u, both obtained from Thm. 1. If, instead, the patient begins their stay in the overflow ward,

the probability that the patient’s preferred ward is u is given by âuβ̂u/
∑

j∈ξ âjβ̂j, where âj is the

true arrival rate to ward j obtained from Thm. 1. Thus to calculate the patient’s true demand

for service, the workload is shifted from the observed load in the overflow ward to the specialized

ward(s) that represent the patient’s preferred ward as shown in Fig. 5. Doing this for each patient,

we can transform the hospital’s congestion-contaminated raw data into congestion free data that

can be used to more accurately compute the location function probabilities.

An example of a fully parameterized location process for cardiology patients is shown in Table

2, illustrating before and after the transformation to extract the true demand over five days. Entry

(j, t) of the matrix represents the probability that the patient will require a bed in ward j, t time

periods (e.g. days) after admission. In this table, ward A3 is a cardiology ward, CCU is the critical

care unit, ICU is the intensive care unit, and C2O is a ward for short stay patients (usually less than
13



Ward 1 W2 W3 W4 Ovrflw
Day 
2 0 0 0 1 0

Day 
3 0 0 0 0 1

Day 
4 0 0 0 0 1

Ward 1 W2 W3 W4 Ovrflw

Day 2 0 0 0 1 0

Day 3 መଵ/෍ߚସ,ଵ̂݌ መ௝ߚସ,௝̂݌
௝∈క

መଶ/෍ߚସ,ଶ̂݌ መ௝ߚସ,௝̂݌
௝∈క

መଷ/෍ߚସ,ଷ̂݌ መ௝ߚସ,௝̂݌
௝∈క

0 0

Day 4 መଵ/෍ߚସ,ଵ̂݌ መ௝ߚସ,௝̂݌
௝∈క

መଶ/෍ߚସ,ଶ̂݌ መ௝ߚସ,௝̂݌
௝∈క

መଷ/෍ߚସ,ଷ̂݌ መ௝ߚସ,௝̂݌
௝∈క

0 0

Congestion Contaminated Data Preferred Ward Transformation

Figure 5 Transformation of congested data into true demand data for an individual patient who stayed

in Ward 4 on day 2 of their hospital stay and then was transferred to an overflow unit on day

3 because the preferred ward that they wanted to transfer to was full.

2 days). Note that the probabilities need not sum to 1 because implicitly the remaining probability

mass not assigned to a ward is the probability of the patient not requiring a hospital ward bed at

time t.

Time (Days)

Ward 0 1 2 3 4

A3 45.6% 37.8% 21.3% 19.1% 17.0%
C2O 6.2% 0.1% 0.0% 0.0% 0.0%
CCU 7.1% 3.5% 2.4% 1.3% 1.0%
ICU 0.1% 0.1% 0.1% 0.1% 0.1%

(a)

Time (Days)

Ward 0 1 2 3 4

A3 45.8% 38.0% 21.6% 19.4% 17.3%
C2O 6.2% 0.1% 0.0% 0.0% 0.0%
CCU 7.4% 3.6% 2.5% 1.5% 1.3%
ICU 0.1% 0.1% 0.2% 0.1% 0.1%

(b)
Table 2 Patient Temporal Resource Needs (PATTERN) matrix for a cardiology patient for (a) the congestion

contaminated path and (b) the estimated true demand path

Remark 3. Through testing, the optimization model presented in Sec. 4 was shown to be robust

to the modifications to the location process resulting from correcting for congestion-contaminated

paths. The difference between the optimization results using congestion contaminated location

functions versus the transformed “true demand” location functions was small. Over several different

scenarios, the relative percent difference in objective function (blocking probability) was very small

– between 3% and 5% in experiments run, or likewise a difference in expected blockages per week

of 0.05 to 0.1 – and the final schedules were very similar. To explain how this can occur, consider

that the math model optimizes system level metrics (hospital level blockage, or total elective

throughput) subject to constraints on off-ward census, which is the model component impacted by

congestion-contamination. If those constraints are not very tight, they will not have much impact.

Furthermore, in most cases there are many possible solutions that achieve a similar objective

value, so in many instances a change in the off-ward constraint brought about by correcting for
14



congestion contamination will not have a large impact on the objective if another solution with

similar performance can be achieved by shifting some of the elective workload. Logically, sufficiently

high levels of data contamination will eventually have a strong impact on the optimal solution after

correcting for data contamination.

3.3. PATTERN Poisson-arrival-location Model (PALM) of Emergency Census

We begin by modeling the demand for services with each ward modeled as a cluster of infinite

server queues. There is one queue for each emergency patient type, with its own non-homogeneous

arrival rate, its own service distribution, and its own routing probabilities, denoted by Massey and

Whitt (1993) as
(
Mt/Gt/∞

)N
/Gt. It has been shown that the non-stationary Poisson Process is

a good model for emergency patient arrivals (see Harrison et al. (2005)), and we allow for general,

non-stationary service time distributions as well as non-stationary routing probabilities that may

also depend on the length of stay in a given ward. Our interest lies in the number of patients

demanding a bed in each ward. Letting there be |W|=M wards and n emergency patient types,

the network of M · n queues has Qu(t) =Q1
u(t) +Q2

u(t) + · · ·+Qn
u(t) emergency patients placing

a service load on ward u at time t, where Qk
u(t) is the demand of type k patients for ward u. Let

Q(t) =
∑

u∈W
∑n

k=1Q
k
u(t) denote the total emergency patient load at time t. These two quantities

are sufficient for our later analysis, in which we overlay capacities on the demand model to calculate

blockages and off-ward census.

To specify the PATTERN PALM model for the emergency census process, we rely on the Poisson

random measure approach proposed by Massey and Whitt (1993). In PATTERN PALM, patients

arrive according to a non-homogeneous Poisson process and then flow through the hospital accord-

ing to our PATTERN stochastic location process Ls,k(t) described in Section 3.2. Details of the

standard Poisson random measure and its extension to a doubly stochastic Poisson process can be

found in the Online Appendix EC.1, which also provides elaboration on this section. We define our

PATTERN PALM random measure in terms of the composition of the standard Poisson random

measure M, and the PATTERN intensity measure, µ. In this section we refer to M, the set of

measures µ on R+, and N = {µ ∈M : µ(t) ∈ Z+}, the set of measures µ ∈M that yield integer

values.

Here we provide an alternative definition of the intensity of the Poisson random measure for the

PALM model to enable the extension of the arrival-location modeling approach to deterministic

controlled arrivals in Section 3.4. To specify the location random measure, we define a mapping

from the probability space (Σ,B,P) into the measure space (M,B(M)), with B(·) as the Borel
15



sigma algebra. Let the probability that a patient of type k arriving at time s is in ward u at time

t be defined as

Pk(σs ∈Σs : σs(t) = u)≡ Ps,k(σ ∈Σ : σ(t) = u) =

{
0 if t < s
pk,us (t− s) if t≥ s. (8)

The random location measure of the stochastic process, Ls,k(t), for the subset of wards J ⊆ S is

then specified by

Λk,s(t,J , σ) =

{
1 if σ(t)∈J , σ ∈Σs

0 otherwise.
(9)

Now we can specify the random intensity measure, Nk, for patients of type k by combining

the non-homogeneous Poisson arrival process having nonnegative deterministic integrable external-

arrival-rate function αk(t) ∈R+ with the location random measure from Equations 8 and 9. The

arrival rate function, αk(t), drives the number of type k emergency patient arrivals. Once a patient

has arrived at time s, the patient then flows through the wards according to the PATTERN

stochastic location process, Ls,k(t) with dynamics driven by the probability measure Ps,k(·).

The rate of flow into the group of wards J at time t of type k arrivals entering the hospital

at time s follows by multiplying the non-stationary arrival rate by the stochastic location random

measure: αk(s)Λk,s(t,J ). Random measure Nk gives the random arrival-transition intensity of type

k arrivals to wards J at time t for patients that entered the hospital over the interval (a, b]:

Nk((a, b], t,J ) =

∫ b

a

αk(s)Λk,s(t,J )ds. (10)

Intuitively, this can be related to Poisson splitting of a non-homogenous Poisson process. The

external arrival intensity drives the number of arrivals over a period of time; however, each arrival

will be in a particular location depending on the location stochastic process Ls,k(t). Therefore the

external arrival intensity is distributed over time across the wards (or “departed”). Because Nk is a

random intensity, M◦Nk is a random measure that represents a doubly stochastic Poisson process.

For our purposes, the mean arrival-transition intensity in combination with the Poisson random

measure is sufficiently precise and computationally efficient. The mean (deterministic) transition

intensity measure, µk, and it’s properties are defined in the following lemma (proved in the Online

Appendix EC.2):

Lemma 1. For the deterministic average arrival intensity measure, µk, the following hold

(i) µk((a, b], t,J )≡E[Nk((a, b], t,J )] =
∫ b
a
αk(s)

∑
u∈J p

k,u
s (t− s)ds,

(ii) µk is a measure on R×R×S.
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We combine the mean arrival-transition intensity measure with the standard Poisson random

measure to obtain the PATTERN Poisson random measure for type k patients, Mk = M ◦µk. Let

Bi = (ai, bi]× ti×Ji represent the event that patients arrive at the hospital on interval [ai, bi), and

those patients are in the set of wards Ji ⊆ S0 at some future time, ti. Then Mk can be shown to

have a product form Poisson distribution with rate γi:

P
(
Mk(B1) =m1,Mk(B2) =m2, . . . ,Mk(Bn) =mn

)
=

n∏
i=1

e−γiγmi
i

mi!
(11)

γi ≡E[Mk(Bi)] = µk((ai, bi], ti,Ji) =

∫ bi

ai

αk(s)
∑
u∈Ji

pk,us (ti− s)ds. (12)

Eq. 12 follows from Lemma 1. We now quantify the distribution on the number of emergency

patients in the cyclostationary system (mentioned in Section 3.1) in steady state, where the arrival

pattern is repeated on a weekly basis. If we let τk be the maximum length of stay for a patient of

type k (in our case study of Sec. 4.4, maxk τk = 215) then we have the following result, which is

proved in the Online Appendix EC.2.

Theorem 2. The number of emergency patients in ward u, denoted by Qu(t) for u ∈ {1, . . . , n},

are independent Poisson random variables for each time t∈R+ with finite mean given by

mu(t) =
n∑
k=1

∫ t

t−τk
αk(s)p

k,u
s (t− s)ds. (13)

3.4. PATTERN Deterministic controlled-arrival-location Model (d-CALM) of Elective Census

The approach for the elective census model represents an extension of the PALM methodology to

processes with deterministic arrivals, which we term the deterministic controlled-arrival-location

model (d-CALM). In this approach, arrivals occur at specific times (possibly in batches), rather

than according to a Poisson distribution. Once a patient of type k has arrived at time s, they flow

through the hospital according to their PATTERN stochastic location process Ls,k as in Section 3.2.

This makes explicit our condition that each patient type has a unique location process determined

by their characteristics at the time of admission.

3.4.1. Defining the Elective Census Stochastic Process. Combining the PATTERN

model for individual patients with the elective admission schedule, Θ, it is possible to model the

total elective census in the hospital over time to represent either historical or future behavior. We

first present the formal analysis, then illustrate it with an example. Our approach is to formulate a
17



point process as in Section 3.3. For patients of type k, let
(
(tk,1,Θk,tk,1), (tk,2,Θk,tk,2), . . .

)
represent

the sequence of deterministic arrivals with tk,i being the time of arrival of the ith batch of patients

of type k and Θk,tk,i being the number of type k patients scheduled for time tk,i. Let Ω = Σ∞ so that

ωk = {σk,(tk,1),1, σk,(tk,1),2, . . . , σk,(tk,1),Θk,tk,1
, σk,(tk,2),1, σk,(tk,2),2, . . . , σk,(tk,2),Θk,tk,2

, . . .} ∈ Ω represents

the set of location functions for the scheduled arrivals. Under the infinite capacity model, we can

define the d-CALM probability measure for patients of type k being in ward u as

Pk({ω ∈Σ∞ : σk,(tk,n),n(t) = u}) =

{
0 if t < tk,n
pk,u(tk,n)(t− tk,n) if t≥ tk,n , (14)

where pk,u(tk,n)(t− tk,n) is as before in Eq. 3. Then we can define the d-CALM point process, for a

realization vector ω as

Nk,u,Θ(t,ω) =

{∑
s∈{tk,i:tk,i<t}

∑Θk,s
n=1 Λk,s(t, u,σk,s,n) if tk,1 < t

0 if tk,1 > t,
(15)

where Λk,s(·) is the patient type k random measure defined for the stochastic location process in

Eq. 8 and 9. It can be seen that this process describing the elective/scheduled workloads across

the network of wards can be written instead as

Nk,u,Θ(t) =
∑

s∈{tk,i:tk,i<t}

Θk,s∑
j=1

11{Ljs,k(t) = u}, (16)

where Nk,u,Θ(t) is the number of elective patients of type k in ward u at time t under schedule Θ.

We will work with this more convenient form to analyze the d-CALM process, which is equivalent

to the point process defined by Eq.’s 14 and 15. The ward level census can be calculated by

summing over patient types. Now we also include the system design assumption of a cyclically

repeating elective admission schedule. We present the case where the hospital is concerned with

daily measures of admissions and census as an example.

Using Eq. 16 the census in ward u, Ct
u,d1

, can be calculated on week t on a given day d1 of the

admission cycle. If we take the length of the cycle to be one week for example, the census in ward u

on a given day d1 can be calculated for a t week horizon (Ct
u,d1

from Eq. 17) or an infinite horizon

(C∞u,d1 from Eq. 18),

Ct
u,d1

=
7∑

d2=1

∑
k∈D

Θk,d2∑
j=0

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}
(17)

C∞u,d1 = lim
t→∞

Ct
u,d1

, (18)
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where Lj,ns,k(·) represents the (j,n)th i.i.d instance of the location process Ls,k(·), one process for

each admitted patient, j, on a given week, n, and 11{·} is the indicator function. In Eq. 17 and 18,

the first sum refers to the day of the week that the patient was admitted. The second sum refers to

the diagnosis of the patient and the third sum represents the number of patients of that diagnosis

that are to be scheduled on day d2 of the admission cycle. The final sum over n iterates through

weeks (or through repeating cycles). Total hospital census is found by adding up all wards.

These equations are best understood through a simple example. Consider a plan that admits 2

cardiology patients (patient type = CAR) every Monday. What is the load that this plan places

on the cardiology ward (ward c) on Tuesdays? Let 11{Lj,ns,CAR(t) = c} represent whether the (j,n)

indexed cardiology patient (i.e. jth patient admitted on week n) is in the cardiology ward c on

day t given they were admitted on day s. On the first Monday, the system admits two cardiology

patients (call them patient (j = 1, n = 0) and (j = 2, n = 0)). This leads to a census for Tuesday

of the first week (n= 0) of 11{L1,0
1,CAR(2) = c}+ 11{L2,0

1,CAR(2) = c}. Note that 11{L1,0
1,CAR(2) = c} and

11{L2,0
1,CAR(2) = c} are i.i.d. because they represent two different patients. In the second week we

admit two more cardiology patients (call them patient (j = 1, n= 1) and (j = 2, n= 1)). Since the

first two cardiology patients admitted previously may still be in the hospital (and thus on day 8 of

their length of stay) the census for the Tuesday of the second week (n= 1) is 11{L1,0
1,CAR(9) = c}+

11{L2,0
1,CAR(9) = c}+11{L1,1

8,CAR(9) = c}+11{L2,1
8,CAR(9) = c}. If we let the system run for t weeks, then

the census on the Tuesday of week t is given by
∑t

n=0 11{L1,n
7n+1,CAR(7t+2) = c}+11{L2,n

7n+1,CAR(7t+

2) = c}.

This shows how we construct the census profile for Eq. 17 and 18. In this paper we are primarily

interested in the steady state behavior of the system, and thus rely mostly on the infinite horizon

formulation of Eq. 18 in the analysis that follows.

3.4.2. Moments of the PATTERN d-CALM Elective Census Process. An important

feature of the d-CALM model is that the first and second moments of the elective census process

can be calculated analytically, which facilitates the elective admissions optimization. Taking the

cycle length to be one week for example, the census mean for ward u on a given day d1 can be

calculated from Eq. 17 and 18 by the monotone convergence theorem as

µd1,u(Θ) = E
[ 7∑
d2=1

∑
k∈D

Θk,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t)) = u

}]
=

7∑
d2=1

∑
k∈D

Θk,d2 ·
∞∑
n=0

pk,ud2−7n(d1− d2 + 7n). (19)
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The equality follows from the fact that 11{X = xk} follows a Bernoulli distribution and thus

E
[
11{X = xk}

]
= pk. The mean census level in the hospital is

∑
u∈W µd1,u(Θ).

We compute the variance of the elective census process for (1) the variance in ward census and

(2) the variance in total hospital census (with proof in the Online Appendix EC.2).

Lemma 2. The covariance at day t of the cyclostationary location processes for two patients of

types k1 and k2 arriving at times s1 and s2 being in ward u1 and u2 that were admitted as patient

j1 and j2 of week n1 and n2 is:

(i) Cov
(
11{Lj1,n1s1,k1

(t) = u1},11{Lj2,n2s2,k2
(t) = u2}

)
= 0 for all (j1, n1, k1, s1) 6= (j2, n2, k2, s2),

(ii) Cov
(
11{Lj,ns,k(t) = u1},11{Lj,ns,k(t) = u2}

)
=−pk,u1s (t− s)pk,u2s (t− s) for u1 6= u2.

Theorem 3. Letting d(n) = d1−d2 +7n, the variance of the cyclostationary ward and total census

processes on day d1 ∈ {1,2, . . . ,7} considering an infinite horizon and admission plan Θ is

(i) σ2
d1,u

(Θ) =
∑7

d2=1

∑
k∈D Θk,d2

∑∞
n=0 p

k,u
d2−7n(d(n))(1− pk,ud2−7n(d(n))),

(ii) σ2
d1

(Θ) =
∑

u∈W σ2
d1,u

(Θ)−
∑7

d2=1

∑
k∈D Θk,d2

∑∞
n=0

∑
u1 6=u2 p

k,u1
d2−7n(d(n))pk,u2d2−7n(d(n)).

We see that σ2
d1

(Θ) can be written as a linear function of the admission plan (decision) Θ,

and thus included in an integer programming framework for determining optimal schedules. The

variance and covariance terms can be calculated offline and enter the optimization as data. Since,

from Theorem 3, the variance is still linear in terms of our decision variables Θk,d, the model

remains solvable by standard MIP solution approaches.

3.4.3. CALM with deviations from the planned admission schedule. Although the

purpose of this paper is to develop an optimal strategic admission plan and predict its benefits if

followed correctly, we can also capture the effect of deviations from the plan by letting the decision

variable (admission target) be the mean rate of a general stochastic arrival process. The variability

around the mean represents deviation from the plan. The following theorems show that the mean

of the CALM model can be calculated linearly for any arrival process and that the variance of the

CALM model can be calculated linearly for a certain class of arrival processes (with proofs given

in the Online Appendix EC.2).

Theorem 4. Let Xk,d be the random number admissions of type k and day d having mean E[Xk,d] =

Θk,d. The mean workload in ward u on day d1 is given by

µd1,u(Θ) =
7∑

d2=1

∑
k∈D

Θk,d2 ·
∞∑
n=0

pk,ud2−7n(d1− d2 + 7n). (20)
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Theorem 5. If V ar[Xk,d] = f(Θk,d), where f is a linear function, then the variance of the workload

in ward u on day d1 is also linear in Θk,d and is given by

(i) σ2
d1,u

(Θ) =
∑7

d2=1

∑
k∈D

[
Θk,d2

∑∞
n=0 p

k,u
d2−7n(d(n))(1− pk,ud2−7n(d(n)))+

f(Θk,d)
(∑∞

n=0 p
k,u
d2−7n(d(n))

)2]
,

(ii) σ2
d1

(Θ) =
∑

u∈W σ2
d1,u

(Θ)−
∑7

d2=1

∑
k∈D Θk,d2

∑
u1 6=u2

∑∞
n=0 p

k,u1
d2−7n(d(n))pk,u2d2−7n(d(n))+∑7

d2=1

∑
k∈D f(Θk,d2)

∑
u1 6=u2

[∑∞
n=0 p

k,u1
d2−7n(d(n))

][∑∞
n=0 p

k,u2
d2−7n(d(n))

]
.

Theorem 4 shows that the mean workload can be calculated linearly in the admission plan, Θ

regardless of the arrival distribution. Theorem 5 asserts that, if the variance of the arrival distri-

bution is a linear function of the mean, then the variance may also be calculated linearly in Θ. A

number of distributions that would be good for modeling deviation from the admission plan also

have the property that the variance is a linear function of the mean including uniform, Poisson,

and Normals of the form N(Θk,d, f(Θk,d)).

3.5. Validating the Hospital Census Model

The total census process (for wards and for the hospital) is approximated by summing the emer-

gency and elective census processes (Sections 3.3 and 3.4). In this section, we show that this

approximation closely matches the actual census process for four hospitals from four countries and

3 continents. For each hospital, we divided the data equally into a training set and a test set. The

training set (consisting of the first half of the data, in terms of time) was used to parameterize the

location process models and estimate future emergency arrival rates. Our model then generated

emergency census estimates for the test set (the second half of the data) using the PATTERN

PALM model parameterized by the location processes and emergency arrival rate estimates from

the training data. The d-CALM census model was built using location processes parameterized by

the training data and a weekly cyclostationary, deterministic controlled arrival (admission) pro-

cess. The deterministic arrival rate of each type on any day was based on the mean arrival rates

for elective admission by day of week in the test data. This was done to emulate the idea that

the strategic plan was followed on average, though in the test data there were deviations from the

“plan” from week to week.

It is important to note that, despite the fact that we built a cyclostationary model with deter-

ministic planned elective admission rates based on historical data, the model still performed quite

well in predicting true future occupancy levels across a variety of measures (mean, quantile, and

ward-level) in four significantly different hospitals. Tables 3 and 4 show the model accuracy at the

hospital and at the ward level for 33 hospital wards. Hospital 3 was a small hospital (in terms of
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beds), Hospitals 2 and 4 were medium sized, and Hospital 1 was large. The average occupancy in

the 4 hospitals ranged from 82% and 92%. We obtained an average absolute percent error of 2.0%

across all hospitals.

All Hospital 1 Hospital 2 Hospital 3 Hospital 4
DOW Avg Err 95% Q Err Err 95% Q Err Err 95% Q Err Err 95% Q Err

Sun 1.0% 0.1% 1.0% -3.8% -2.6% 1.0% 2.4% 2.8% 3.2%
Mon -2.0% -0.1% -0.5% -1.8% -0.2% -4.1% -4.2% -0.6% -3.3%
Tue 0.3% -0.8% -0.1% -1.0% 1.2% 1.0% 2.5% -1.0% -2.6%

Wed -1.7% -1.5% 1.1% -0.7% 0.8% -5.2% -5.9% -2.8% -2.9%
Thu 0.3% -1.1% 2.8% 1.1% 1.6% 2.3% 1.6% -1.8% -4.8%

Fri 1.4% -1.2% 1.9% 1.5% 2.1% 5.5% 2.5% 1.3% -0.9%
Sat 2.6% -1.6% -0.2% -1.4% -0.6% 5.9% 7.4% 3.7% 3.7%

MAPE 2.0% 0.9% 1.1% 1.6% 1.3% 3.6% 3.8% 2.0% 3.0%

Table 3 Accuracy of the hospital level occupancy model across 4 hospitals on 3 different continents as measured

by the percent error in the mean (Err) and the percent error in the 95% quantile (95% Q Err). The mean percent

error across hospitals is the first column and the mean absolute percent error (MAPE) across days of the week is

given in the last row in bold.

DOW
Avg of Sample of the Best and Worst Wards

33 Wards Ward 3 Ward 7 Ward 12 Ward 22 Ward 25 Ward 31
Sun 3% 1% 1% 8% 6% 0% 1%
Mon 4% 0% 4% 7% 11% 0% 0%
Tue 3% 0% 1% 6% 8% 0% 1%
Wed 3% 2% 1% 5% 6% 2% 1%
Thu 5% 1% 0% 6% 3% 3% 2%
Fri 5% 1% 0% 7% 4% 4% 3%
Sat 4% 3% 2% 6% 7% 3% 2%
Avg 4% 1% 1% 7% 6% 2% 1%

Table 4 Average absolute percent error of the model vs. true occupancy across 33 wards and a sample of the

best and worst errors for 6 of the 33 wards.

The deviations are seen to be relatively small and have little effect on accurately approximating

system metrics such as cancelations and blockages as will be calculated in Section 4.3. Prior efforts

at solving this problem for the entire hospital have relied on simulations to achieve accurate census

approximations, making optimization difficult (see Helm et al. (2011), Hancock and Walter (1979),

Harper (2002)). The validation in this section demonstrates that the analytical model, which is

amenable to optimization, is sufficient for modeling hospital occupancies, thereby eliminating the

need for computationally limiting simulations.
22



4. Optimization of Elective Admissions Mix and Volume

In Section 3 we developed a modeling and analysis method for quantifying census under a given

admission plan. In this section we design an integer programming model to determine the optimal

schedule given a set of metrics. We trade off two conflicting objectives in hospital management: (1)

the desire to admit as many elective patients as possible (alternatively to keep bed utilization high)

and (2) the desire to limit the number of blockages and off-ward boarding for both emergency and

elective patients. The stochastic process from Section 3 characterizes the raw demand for beds, so

to quantify the blockages we need to superimpose the hospital capacity on this model. Section 4.1

presents methods for calculating various blockage metrics in a manner that can be incorporated into

an integer programming formulation. Section 4.2 presents two different formulations for elective

admissions mix and volume optimization that could be useful to hospitals. Section 4.3 validates

the method by comparing the forecasted census from the optimization model with a high fidelity

simulation of hospital operations.

4.1. Computation of System Effectiveness Metrics

In hospitals, there are two significant types of bed block: (1) ward-level bed block and (2) hospital-

level bed block. Type 1 prevents a patient from entering a particular ward, forcing the patient into

an off-ward bed. Type 2 prevents any access to the hospital (e.g. cancelation, diversion). Limiting

both types of bed block is critical to operating a high performing hospital. To capture the different

blocking effects, we develop two linearizing approximations to capture Type 1 (ward-level) and

Type 2 (hospital-level) blocking; illustrated in Figure 6. Both approaches begin by calculating the

mean elective census by day of week (using Theorem 4), indicated by the solid bar (which we justify

below). The number of beds remaining (i.e. capacity minus mean elective demand) is referred to

as the reserved capacity (for emergency patients).

Expected Blockages: Ward-Level. For Type 1 blocking, shown in Fig. 6 (a), we start with

the mean census, given by Theorem 4, and add the emergency patients, indicated by the individual

bars on top of the solid bar, calculating the probability of each quantity of emergency patients

present using Theorem 2. Blockages are tallied when the number of emergency patients plus the

mean number of elective patients exceeds the ward capacity, Bu for ward u. This enables, for each

ward, the expected amount by which demand will exceed capacity and therefore trigger off-ward

servicing. This captures the dynamics in which patients are not “lost” and service continues even

for blocked patients, which is a better representation of reality than a loss model or a traditional

blocking model. This approximation is presented mathematically in Eq.’s 27 and 28 of Sec. 4.2.
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Reduced Capacity Erlang Approximation: Hospital-Level. Demand from patients

blocked from entering the hospital is lost. To capture this phenomenon we propose an approxima-

tion based on the Erlang loss model that we call the Reduced Capacity Erlang Approximation,

illustrated in Fig 6 (b). Blocking is calculated using the Erlang loss formula on a system that has

an offered load of m1(t), the emergency offered load, and number of servers B−m2(t), where m2(t)

is the elective offered load:

β(s−m2(t),m1(t)) =
m1(t)s−m2(t)/(s−m2(t))!∑s−m2(t)

k=0 m1(t)k/k!
=

P(CEm(t) = s−m2(t))

P(CEm(t)≤ s−m2(t))
. (21)

This approximation can be linearized in the decision variable, Θ, the elective admission schedule.

In Sec. 4.2, Eq.’s 23 - 25 serve to linearly calculate to arbitrary precision P(CEm(t)≤ s−m2(t)).

To linearize the the blocking probability constraint – limiting the blocking probability to a value

less than α – simply multiply both sides of the inequality by the Erlang denominator.

β(s−m2(t),m1(t))≤ α⇔ P(CEm(t) = s−m2(t))≤ αP(CEm(t)≤ s−m2(t)).

Since P(CEm(t)≤ s−m2(t)) can be calculated linearly, the Erlang loss blocking constraint can be

linearized. This constraint is represented by Eq.’s 23 - 25 of Sec. 4.2.
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(a) Expected blockage approximation for wards (b) Reduced Capacity Erlang Approximation

Figure 6 Illustration of approximations for (a) expected off-ward census and (b) hospital level blocking

probability.

Since the controlled cyclostationary system will optimize a deterministic number of elective

admissions by day of week, the majority of the census variability will now come from the emergency

patients, which we capture with the emergency census distribution. Hence, these approximations

capture much of the stochastic dynamics that contribute to blocking. This likely explains the good

accuracy of these approximations using real data that is exhibited in Sec. 4.3.
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4.2. Mixed Integer Programming Formulation

We begin this section with notation and then proceed to a formulation of the elective admission mix

and volume optimization model. The cycle length we consider is days 1, . . . ,7 to match a typical

weekly schedule.

Sets
D set of elective patient diagnosis types

W set of hospital wards
Parameters
Bu ward u capacity in terms of beds

α limit on the blocking probability for arriving patients

κu percent of total cancelations that are attributed to ward u

α̂u limit on the average number of off-ward patients allowed for ward u

pk,us (d) probability that an elective patient of type k admitted on day s is in ward u,
d days after admission

p̂uz,d probability there are z emergency patients in ward u on day d from the PATTERN
PALM model

p̃z,d probability there are z emergency patients in the hospital on day d from the
PATTERN PALM model

θk,d current elective admission volume of type k patients on day d.

θ̂k,d maximum number of elective admissions of type k allowed on day d.

R reward vector where Rk is the reward for admitting patient of type k
Decision Variables
Θk,d number of type k ∈D patients scheduled on day d

δ1
z,d indicator of whether z emergency patients in the hospital on day d would exceed capacity

δ2
z,d indicator of whether z emergency patients in the hospital on day d would exceed capacity

minus one.

δ̂uz,d number of ward u off-ward patients on day d if there are z emergency patients in ward u
It is important to note here that the probabilities pk,us (d), p̂uz,d, and p̃z,d are all calculated offline

per the analysis in Sections 3.3 and 3.4 and then become data inputs to the two mixed integer

programs that follow.

4.2.1. Maximum Elective Admissions Formulation. First we present a formulation that

maximizes the weighted throughput of elective admissions subject to constraints on bed blockage.

11 denotes a column vector of all ones and M is a large number. For the sake of generality we

include the “reward” row vector, R, providing a relative value of admitting a patient of type k. Our

validation sets R to be a row of all 1’s (every patient type has the same value) and then manipulates

the constraints if management’s goal is to increase the volume of one particular service.

max
Θ,δ,δ̂

R ·Θ · 11 (22)
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s.t.

Mδ1
z,d1
≥ z−

∑
u∈W

(
Bu−

7∑
d2=1

∑
k∈D

Θk,d2 ·
∞∑
n=0

pk,ud2−7n(d1− d2 + 7n)
)

(23)

d1 = 1, . . . ,7, z = 1,2, . . .

Mδ2
z,d1
≥ z−

∑
u∈W

(
Bu−

7∑
d2=1

∑
k∈D

Θk,d2 ·
∞∑
n=0

pk,ud2−7n(d1− d2 + 7n)
)

+ 1

d1 = 1, . . . ,7, z = 1,2, . . . (24)
∞∑

z=0

p̃z,d

(
δ1

z,d− δ2
z,d

)
≤ α

(
1−

∞∑
z=0

p̃z,dδ
1
z,d

)
d= 1, . . . ,7 (25)

δiz+1,d ≥ δiz,d i= 1,2, d= 1, . . . ,7, z = 1,2, . . . (26)

δ̂uz,d1 ≥ z +
7∑

d2=1

∑
k∈D

Θk,d2 ·
∞∑
n=0

pk,ud2−7n(d1− d2 + 7n)−Bu−κu
7∑
d=1

∞∑
`=0

p̃`,d
∑̀
z=0

δ1
z,d (27)

∀u∈W, d1 = 1, . . . ,7, z = 1,2, . . .
∞∑

z=0

p̂uz,dδ̂
u
z,d ≤ α̂u ∀u∈W, d= 1, . . . ,7 (28)

δ̂uz+1,d ≥ δ̂uz,d d= 1, . . . ,7, z = 1,2, . . . (29)
7∑
d=1

Θk,d ≥
7∑
d=1

θk,d ∀k ∈D (30)

Θk,d ≤ θ̂k,d ∀k ∈D, d= 1, . . . ,7 (31)

Θk,d, δ̂
u
z,d ∈Z+, δ1

z,d, δ
2
z,d ∈ {0,1} ∀k ∈D, u∈W, z∈N, d= 1,2, . . . ,7 (32)

The objective function, Eq. 22, maximizes the weighted throughput of elective patients. Con-

straints 23-25 calculate the Reduced Capacity Erlang Approximation described in Sec. 4.1 by

setting indicator decision variables: δ1
z,d = 11{z emergency patients exceeds hospital capacity on day

d} in Eq. 23 and δ2
z,d in Eq. 24, which is the same except that capacity is reduced by 1. Thus∑∞

z=0 p̃z,dδ
1
z,d = P(Emerg Load ≥ Capacity) and

∑∞
z=0 p̃z,dδ

2
z,d = P(Emerg Load ≥ Capacity-1). That

means that the LHS of Eq. 25 is precisely P(Emerg Load = Capacity). The RHS is therefore

P(Emerg Load ≤ Capacity), completing the Erlang loss B formula described in Sec. 4.1. Note that∑7

d2=1

∑
k∈D Θk,d2 ·

∑∞
n=0 p

k,u
d2−7n(d1− d2 + 7n) is µd1,u(Θ) from the analysis of the CALM model in

Sec. 3.4.2 (Theorem 4) and p̃n,d is the Poisson probabilities from Theorem 2 of Sec. 3.3. Constraints

27 - 28 mathematically capture the expected off-ward census approximation detailed in Sec. 4.1.

In constraint 27, note that the term κu
∑7

d=1

∑∞
`=0 p̃`,d

∑`

z=0 δ
1
z,d is subtracted from µd1,u(Θ), which

accounts for the fact that, if patients are blocked from the hospital, they will not contribute to

ward demand and off-ward census. The parameter κu refers to the historical trend and/or hospital

protocols for what types of patients get canceled when a cancelation decision must be made. Note
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that, while we use infinite sums to represent expectations and blocking probabilities, truncating

these to finite sums is necessary. One approach is to truncate based on the product of the overage

and the Poisson probabilities (which decay quickly two standard deviations above the mean) to

limit the expected overage error. The same truncation scheme is used for both the z index (Eq.’s

23, 24, 27) and the n index (Eq.’s 23-29) since the two are linked through the δ and δ̂ helper

variables.

Constraints 26 and 29 are cuts that were added to the model to increase solution speed by greatly

reducing the number of combinations that must be considered by branch and bound. The meaning

of Eq. 26 (Eq. 29) is straightforward: if an n patient emergency load exceeds capacity (exceeds

capacity by a certain amount) then an n + 1 patient emergency load will also exceed capacity

(exceed by at least as much). Without this constraint, a model with three wards and three patient

types failed to solve in under 24 hours; while solving in under 30 seconds with the constraint.

The final two constraints, Equations 30 and 31, represent the reality that the model should not

change the elective admission schedule in ways incommensurate with historical hospital practice.

Specifically Eq. 30 ensures that, under the improved plan, no service’s planned volume is reduced

from their historical levels (a feature easily controlled if a specialty OR service needs to target a

different load). Eq. 31 allows the model to enforce capacity constraints beyond hospital beds. For

example, limiting the amount of Operating Room time, or enforcing the typical practice to admit

few or no elective patients on the weekends (e.g. Θk,Sunday ≤ 0 ∀k).

4.2.2. Minimum Blockages Formulation. Another useful formulation is to keep the weekly

volume of elective admissions fixed and attempt to minimize the number of blockages. This model

reshuffles the mix of elective admissions across the days of the week to eliminate unnecessary

blockages caused by an unstable, unbalanced schedule. The main difference in this formulation is

that the objective function becomes the expected number of blockages

min
Θ,δ,δ̂

7∑
d=1

∞∑
`=0

p̃`,d
∑̀
z=0

δ1
z,d. (33)

We no longer need the blocking constraints defined by Eq. 23 and Eq. 25 and Eq. 26 would only

apply to δ1
z,d, since δ2

z,d is no longer needed as a decision variable.

Another possible objective that our framework is capable of capturing is minimizing the day-to-

day variability of bed census. For example, it would be possible to minimize the gap between the

largest and smallest daily census within the MIP.
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4.3. Validating the Hospital Census Optimization Model

As in Section 3.5, it is important to quantify the accuracy of the hospital census and blockage

approximations for the optimal elective schedule. Because there is no historical record of hospital

census and blockages for the optimal schedule, we compare the census approximation with a high-

fidelity simulation model that has already been validated against historical hospital data (see Helm

et al. (2011, 2010, 2009)).

A year’s worth of historical data from a medium-sized, non-teaching partner hospital was used

to calibrate both the optimization and simulation models for a core subset of nine hospital wards

(out of 22 total), including medicine, surgical and ICU/CCU wards. This reduced the amount of

data analysis and cleaning without degrading the value of the study.
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Figure 7 Simulation output vs. stochastic model output for characteristic hospital measures.

Sun Mon Tue Wed Thu Fri Sat Tot

Sim Census 71.0 85.8 85.8 85.7 85.0 88.9 74.9 N/A
Approx Census 73.2 87.1 85.5 86.1 85.3 88.4 75.5 N/A
% Diff Census 3.1% 1.6% -0.4% 0.4% 0.4% -0.6% 0.8% N/A

Sim Blockages 0.00 0.37 0.38 0.35 0.27 0.66 0.00 2.03
Approx Blockages 0.00 0.34 0.28 0.34 0.27 0.67 0.00 1.9

Diff Blockages 0.0 0.03 0.1 0.01 0.0 0.01 0.0 0.13
Table 5 Simulation output vs. stochastic model output for characteristic hospital measures

Figure 7 and Table 5 confirm that the stochastic census model is a good approximation of actual

census levels and blockages. The small bias toward higher census levels can be explained by the

manner in which the simulation treats cancelations and blockages. In the simulation, the demand

from cancelations and blockages is considered lost (an approximation of reality), whereas the census

approximation models the overall demand for beds without loss. Although blockages are calculated,

the blocked patients are not removed from the demand calculations, which yields the depression of
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census in the simulation versus the analytical model. The reality is likely somewhere in between,

as some demand is lost and some is rescheduled. Regardless, the estimated values are very close;

average weekly blockages only differ by 0.13 patients in absolute value and the census differs on

average by only 1%. Because the stochastic census model is an accurate approximation, a detailed

(and slow) simulation is no longer needed to express the tradeoffs between census and blockages

to design effective admission schedules.

4.4. Case Study, Proof of Concept, and Improving Management Practice

To demonstrate the effectiveness and potential uses of our approach to elective admissions schedul-

ing, we validate our method for the partner hospital of Section 4.3 by comparing our optimized

schedules with the current schedule for overnight patients. In 2008, 14,827 patients stayed at

least one night, of which 7,016 were emergency patients while the remaining 7,811 were scheduled

patients. Patients transferred within the hospital 20,462 times for an average of 1.4 transfers per

patient, which underscores the importance of modeling ward network effects. The nine wards we

model comprise about 60% of the total patient volume with similar characteristics to the total

patient population.

One of our primary goals when developing our new modeling methodology was to address patient

blockage (see Sec. 4.2.2), both elective cancelations and emergency patient bed block, without

reducing the number of patients served. The wards modeled admitted 90 elective inpatients per

week on average. The minimum blockage formulation of Sec. 4.2.2 was employed, constraining the

weekly elective volume to equal 90 and also constraining the volumes on each admitting service to

match the current level so that the mix remains constant. The optimization generated an optimal

schedule matching these criteria, which we then simulated (for completeness) to compare with the

current schedule. The result was a 32% reduction in average cancelations per week, shown as the

data point at the end of the down arrow in Fig. 8(b). This reduction results from reducing the

midweek occupancy and smoothing the census as seen in Fig. 8 (a), which compares the original

and optimal census curves.

Some hospitals with growth potential will want to increase the volume of patients served while

maintaining the same level of access. To achieve this, the maximum admissions formulation of Sec.

4.2.1 is employed, constraining the blockages to be less than or equal to the current (3.29 per week)

and maximizing the number of admissions. This included Constraint 30 to ensure that each service

is given at least as many elective admissions as in the current schedule. The data point at the end

of the right arrow in Fig. 8(b) shows an additional 310 elective admissions per year (6 per week)

with slightly better access (3.27 blockages per week).
29



Sun Mon Tue Wed Thu Fri Sat

Smooth Censu 73% 93% 92% 93% 93% 94% 81%

Current Sched 73% 78% 88% 94% 98% 96% 84%

More Elective 121.187 130.4516 146.3596 157.3446 162.4077 160.0881 140.8449

Smooth Censu 0.00441 0.005653 0.005591 0.005612 0.005641 0.005686 0.004897

Current Sched 0.004408 0.00474 0.005316 0.005719 0.005911 0.005815 0.00512

0.719009 0.921643 0.911408 0.914898 0.919572 0.926968 0.798347

0.718595 0.772729 0.866562 0.932292 0.963708 0.94803 0.834614

175.620017

264.624522

Occupancy Standard deviation

Current State 16.26728

Heuristic Adm 13.25217 0.185348
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(a) Occupancy results with current and optimized schedules (b) Pareto curve insight into blockage vs. throughput

Figure 8 Controlling census and occupancy variability in hospitals and obtaining tradeoff insights with our

methodology.

Remark 4. Because of Little’s Law (WIP = Throughput * Cycle Time) and Constraint (30) that

maintains (or increases) the historical average number of patients scheduled per unit time, the

average delay to obtain an admission for scheduled patients will not increase.

Improving Management Practice. These prescriptive models are useful in exploring the

boundaries of hospital efficiency, but hospitals may prefer a balance between volume and blockage,

which our method can also provide. The Pareto curve in Figure 8 (b) presents the tradeoff between

elective admission volume and blockages. Notice that the current schedule is above the Pareto

curve so it can be improved by increasing admissions, decreasing blockages, or both.

To generate the Pareto curve, we use the extreme points as boundaries and employ the minimum

blockage formulation by iterating the weekly number of elective admissions between 90 and 96 and

determining the schedule with the fewest blockages at each admission level. The computational

speed with which the analytical model generates this curve represents an advance in decision sup-

port that enables hospital administrators to understand the key tradeoffs involved in scheduling

their admissions and gives them the freedom to choose their desired operating point. Our opti-

mization models were able to generate the operating curve automatically in a matter of minutes,

with each point taking about 30 seconds.

The key implication is a capability (which we believe is both highly important and not currently

possible) to make strategic admission policies at the hospital level regarding the tradeoff between

throughput and access. This tradeoff is the key to cost, quality, and access, and the Pareto curve

provides hospital managers the ability to make informed decisions that affect this tradeoff.

Implementing the Strategic Admission Plan. As mentioned in Sec. 3.1, the output of

the optimization is a set of decision rules that guide the maximum number of admissions of each

type of patient that can be admitted on a given day of the admission cycle. To avoid being
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too restrictive (and risk increased barriers to acceptance) an implementation should allow the

admissions personnel to fill the slots with whatever patients they would like to schedule as long as

they don’t exceed the admission numbers by patient type. Just as with most other appointment

systems, when all the slots fill up on a given day the patient must be scheduled for a different day

with slots available.

It is also important to note that our model can go far beyond what has been presented in the

case study. For example, the model can be used to design unique schedules for each season –

many hospitals have a low season and a high season in terms of patient demand – by solving one

optimization for each season modeled. Another way to incorporate projected changes in demand

(e.g. hiring more surgeons) is to extend the cycle length (which can be adjusted to any desired

cycle length). Demand forecasts for emergency patients can also be incorporated by modifying the

arrival rates over an admission cycle that matches the demand forecast horizon.

5. Conclusions and Future Work

We have developed new models for a longstanding problem in hospital operations. This methodol-

ogy can efficiently generate optimal schedules to meet high-level hospital criteria while modeling

the entire hospital as a coordinated system. The results have significant potential to inform hospital

decision makers as to how to use admission scheduling as a tool to create a healthcare delivery

system that is less costly while providing better access, quality and service to patients.

Rather than mandating specific implementations of elective procedure scheduling, our approach

provides decision support on case mix and volume by patient type by day of week, mitigating

barriers to adoption. Additionally, the discipline and predictability obtained by embracing this

system of smoothed census will streamline hospital procedures, stabilize the operating environment

for hospital personnel, more efficiently utilize fixed hospital resources, and yield significant cost

savings. For example, census variability reduction enables, among other things, cost savings in

nurse staffing while better facilitating proper nurse to patient ratios.

The HASC problem has been approached in many ways; however, previous approaches have not

been able to generate optimal schedules for the entire hospital, including ward network effects. The

simulation approaches capture the critical general network effects, but they lack a clear schedule

optimization method. The scheduling optimization models, on the other hand, have not included the

general network effects, such as ward transfers and off-ward census, that are critical to accurately

modeling the true census load on hospital wards. Our modeling approach has bridged this gap

by accurately capturing the census and blockage dynamics analytically, eliminating the need for
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simulation and enabling the use of MIP methods. To do so we formulated a PATTERN PALM

“arrival-location-model” to show that the emergency demand for beds by ward can be characterized

as independent Poisson random variables. Secondly, we extended the PALM approach to a new

deterministic controlled-arrival-location model (d-CALM) for elective admissions and analyzed its

properties.

Through the validation process of the hospital census model in Section 3.5 and the analysis

of optimization results, we have generated a number of managerial insights in addition to the

methodological contributions. The results of our analysis and case study show that (1) smooth

census levels do in fact improve blocking and throughput performance, and (2) elective admis-

sion scheduling can be used to smooth census while constraining the amount of planned off-ward

placement across the network of hospital resources. Thus, from a managerial perspective, the goal

should be to design admission plans that drive toward smooth census levels even in the absence

of an optimization model. Further, our validation indicated that a cyclostationary (weekly) model

with a deterministic elective admissions schedule can be a fairly accurate model of actual hospital

flows even when tightly controlled elective admissions processes are not in place. Although hospital

blocking and off-ward placement are complicating realities that contaminate historical data, we

showed that one can often use a system of linear equations to parameterize a corrected flow model

from historical data. Our results provide strong evidence that model-based analysis using historical

data can predict and smooth census by day of week (or cycles of arbitrary lengths).

Methodologically, the novel analytical models developed are much more tractable and powerful

than prior models, allowing the generation of tradeoff curves for hospital blocking versus through-

put. This curve represents an effective decision making tool for hospital administrators, because it

enables flexibility and choice rather than a fixed solution. This approach is likely to increase accep-

tance by administrators, enabling them to make important decisions based on deeper managerial

insights and quantitative analysis.
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Poisson Random Measure and Proofs of Statements

In this online appendix we provide a more detailed description of the basics of the Poisson

random measure (Section EC.1) and proofs of several statements from the body of the article

(Section EC.2).

EC.1. Poisson Random Measure.

We begin this section with some general definitions for point processes that we will use in the

construction of our emergency census process. These definitions and detailed analysis can be found

in Grandell (1977). The Poisson random measure is defined by its intensity measure, so we start

by defining M, the space in which the intensity measure lies as follows.

Definition EC.1. Let M be the set of measures µ on R+ such that µ(0) = 0 and µ(t)<∞ for

all t∈R+.

It is important for the analysis that a metric can be defined in M that makes M separable

and complete (see Grandell (1977)). Let B(M) be the Borel σ-algebra on M. To describe point

processes, it is necessary to also define the following space, N , which is important for the Poisson

random measure we wish to define because the Poisson distribution takes only integer values.

Definition EC.2. Let N = {µ ∈M : µ(t) ∈Z+ for all t ∈ [0,∞)} be the set of measures µ ∈M

that yield integer values.

Now we can define a random measure as

Definition EC.3. A random measure is a measurable mapping from the probability space

(Ω,B,P) into the measure space (M,B(M)) or (N ,B(N )) as the situation requires.

We characterize our PATTERN PALM Poisson random measure by extension of the standard

Poisson random measure, M, which we now define as in Grandell (1977) for clarity. Let Ω =R∞

and define an element ω ∈Ω by the process’s i.i.d. interarrival times: ω = (s0, s1, s2, . . .). Let B be

the natural σ-algebra on R∞ and P be defined as

P({ω ∈R∞ : sk ≤ x}) =

{
0 if x< 0
1− e−x if x≥ 0

. (EC.1)

That is, P assigns exponential probabilities with rate λ= 1 to each interarrival time, sk. Now the

standard Poisson random measure can be defined as

M(t,ω) =

{
k if

∑k−1

j=0 sj ≤ t,
∑k

j=0 sj > t and
∑∞

j=0 sj =∞
0 if s0 > t or if

∑∞
j=0 sj <∞

. (EC.2)
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Let the distribution of the standard Poisson random measure be Π̂, which is a probability

measure on (N ,B(N )) such that for any set A∈B(N ), Π̂{A}= P{M∈A}. The standard Poisson

random measure can be generalized by scaling time according to a deterministic intensity measure,

µ. By letting M◦µ= M(µ) :N ×M→N be a Poisson product measure with distribution denoted

Πµ, we obtain a random measure model for a Poisson process with intensity µ. A special case

is to let µ
(
(0, t]

)
= λt, in which case we get the traditional Poisson process with rate λ. In our

case, however, we are interested in allowing the intensity, which will be denoted by Λ, to be a

realization of a random measure as well. In particular, we want the intensity to represent the non-

stationary arrivals to the various wards of the hospital over time under a total arrival process that

is non-homogeneous Poisson, which yields a doubly stochastic Poisson process in the terminology

of Grandell (1977).

Let M̃ = M ◦Λ be a Poisson random measure on a product space N ×M, where the intensity

random measure Λ has distribution which is denoted by Π. The standard Poisson random measure,

M, has distribution Π̂, so the distribution of M̃ is then specified for any set B ∈N by

PΠ̃(B) = Π̂×Π({(ν,µ)∈N ×M : ν ◦µ∈B})

=

∫
M

Π̂({ν ∈N : ν ◦µ∈B})Π(dµ)

=

∫
M

Πµ(B)Π(dµ), B ∈B(N ), (EC.3)

where the first step follows from Fubini’s theorem (see Folland (1999)) and the definition of M◦µ.

It is important to note that Πµ(B) is a B(M)-measurable function in µ, so the preceding integral

is valid (see Grandell (1977)).

EC.2. Proofs

Theorem 1

Proof. We show the above result using proof by construction. We begin by focusing on the

blocking probabilities β̂i for i ∈ ξ. From Eq.’s 5, it is clear that p̂i,j =
pi,j

1−β̂j
. Substituting this into

Eq.’s 6, we get ∑
k∈ψ

pi,k =
∑
j∈ξ

β̂j

1− β̂j
pi,j for i∈ ξ. (EC.4)

Now we see that Eq.’s EC.4 represent a system of non-linear equations with n equations and n

unknowns. We now transform this non-linear system of equations into a system of linear equations

with a nonsingular coefficient matrix.
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in Eq.’s EC.4, we perform the following substitution to eliminate the non-linearity: let γj =
β̂j

1−β̂j
,

where γ = [γ1, . . . , γn]′ is a column vector. Now it is clear that Eq.’s EC.4 can be written as the

linear system given by

P ξγ = Pψ. (EC.5)

Given that P ξ has full rank, the solution to this system is given by γ = (P ξ)−1Pψ. Then we can

solve for β̂i by substituting the value obtained for each γj back into the equation γj =
β̂j

1−β̂j
. The

rest of the flow equations can be solved by substituting β̂j into Eq.’s 4 and 5. 2

Lemma 1

Proof. (i) First note that Γt,J =
⋃
j∈J Γt,j, where Γt,j is defined as in Eq. 1. Therefore

Ps,k(Γt,J ) =
∑
j∈J

Ps,k(Γt,j)−
∑

Ps,k(
⋂

any two events) +
∑

Ps,k(
⋂

any three events) + . . .

+ (−1)|J |+1P (
⋂
j∈J

Γt,j) =
∑
j∈J

Ps,k(Γt,j) =
∑
j∈J

ps,k,j(t− s)) (EC.6)

The first equality follows from the fact that Ps,k is a probability measure. The second equality

follows from the reasonable assumption that a patient can only be in one ward at a time, and

therefore the intersection of any two sets necessarily has measure zero. Because αk(·) is assumed

integrable and Λk,s(·, ·)∈ [0,1], then for any b∈R+
⋃
{∞}:

µk((a, b], t,J )≡E[Nk((a, b], t,J )] = E

[∫ b

a

αk(s)Λk,s(t,J )

]
=

∫ b

a

αk(s)E[Λk((s, t],J )]

=

∫ b

a

αk(s)Ps,k(Γt,J ) =

∫ b

a

αk(s)
∑
j∈J

ps,k,j(t− s)).

The first equality follows by applying the definition of Nk((a, b], t,J ). The second inequality follows

from the dominated convergence theorem. The third equality follows by applying the definition of

the random measure Λk from Eq. 8 and 9. The final equality follows from Eq. EC.6.

(ii) The location functions are easily seen to be right continuous, with limits from the left existing.

If we endow the function space Σ with the Skorohod J1 topology (as in Massey and Whitt (1993))

then Σ can be shown to be Polish, thereby removing measure theoretic complications. Because we

are modeling patient location by day, our PATTERN process has only finitely many jumps and

the total length of stay is finite. Additionally, the probability measure Ps,k is a measure on Σ and

is a measurable function of s, so the integral is valid.

Now we show that µk is a measure. First, it is clear that µk(∅) = 0. Secondly, integrals over

disjoint sets are countably additive resulting in the countable additivity of µk. That is, if we let

Ei = (ai, bi]× ti×Ji, then

µk( lim
n→∞

n⋃
i=1

Ei) =
∞∑
i=1

∫ bi

ai

αk(s)
∑
j∈Ji

ps,k,j(ti− s)ds=
∞∑
i=1

µk(Ei) (EC.7)
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This directly results in countable additivity of the measure µk, therefore µk is a measure. 2

Theorem 2

Proof. From Appendix EC.1, we know that we can extend the standard Poisson random mea-

sure with an intensity measure. From Lemma 1, we know that the deterministic intensity, µk, is in

fact a measure. Therefore the product form result for each patient type then follows directly from

the properties of the Poisson random measure and the fact that we are considering disjoint subsets

of R×R×S (e.g. one for each pair of ward and patient type).

Finally, the number of patients in a given ward is just the sum over all patient types,

M1 + M2 + . . .+ Mn, (EC.8)

which is Poisson with rate
∑n

k=1 γk =
∑n

k=1

∫ t
t−τk

αk(s)ps,k,j(t− s), because the sum of independent

Poisson random variables is Poisson with a rate that is the sum of the individual rates. 2

Lemma 2

Proof. (i) Each pair of indicators where (j1, n1, k1, s1) 6= (j2, n2, k2, s2) represents two different

patients. Therefore the two indicator random variables are independent, which follows from our

assumption that the care paths of two different patients are independent. To see that each pairing

does indeed represent two different patients, note that each patient’s stochastic process is uniquely

indexed by the patient type, k, the week in which they are admitted, n, the day of the week they

were admitted, s, and their admission number on the day they are admitted, j. Therefore the

indicators 11{Lj1,n1s1,k1
(t) = u1} and 11{Lj2,n2s2,k2

(t) = u2} are independent and their covariance term is

necessarily zero.

(ii) In this case the two indicators represent the same patient at the same point in time. In this

case, the two indicator random variables are not independent, since if a patient is in ward u1 at

time t they are clearly not in ward u2 6= u1. For such pairs the covariance becomes

Cov
(
11{Lj,ns,k(t) = u1},11{Lj,ns,k(t) = u2}

)
=

E
[
11{Lj,ns,k(t) = u1},11{Lj,ns,k(t) = u2}

]
−E

[
11{Lj,ns,k(t) = u1}

]
E
[
11{Lj,ns,k(t) = u2}

]
=

P (Lj,ns,k(t) = u1,L
j,n
s,k(t) = u2)−P (Lj,ns,k(t) = u1)P (Lj,ns,k(t) = u2) =−ps,k,u1(t)ps,k,u2(t). (EC.9)

The last equality follows because the probability that a patient is in ward u1 and in ward u2

simultaneously is assumed to be zero. 2

Theorem 3
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Proof. (i) In calculating ward census (see Eq. 18) any two indicator variables in the sum have the

property that (j1, n1, k1, s1) 6= (j2, n2, k2, s2), because the sum in Eq. 18 contains each combination

of (j, k,n, s) at most once. Therefore the covariance is zero by Lemma 2 (i). Thus the variance of

the ward census can be calculated by

σ2
d1,u

(Θ) = Var
[ 7∑
d2=1

∑
k∈D

Θk,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t)) = u

}]
=

7∑
d2=1

∑
k∈D

Θk,d2 lim
t→∞

t∑
n=0

pd2+7n,k,u(d1− d2 + 7(t−n))(1− pd2+7n,k,u(d1− d2 + 7(t−n))). (EC.10)

The second equality follows by taking the variance inside the sum and from the fact that 11{·} is

a Bernoulli random variable with variance p(1− p).

(ii) Now consider the variance of the total hospital census. For all indicators where (j1, n1, k1, s1)

6= (j2, n2, k2, s2), the covariance is zero by Lemma 2 (i). However, since we are now summing over all

wards, there are pairs of indicators for which this condition does not hold (i.e. we are considering

whether a given patient is contributing to ward u1 or to ward u2 on a given day).

σ2
d1

(Θ) =
2∑
i=1

7∑
ai=1

∑
ki∈D

Θki,ai∑
ji=1

lim
t→∞

t∑
ni=0

∑
ui∈W

Cov(11{Lj1,n1a1+7n1,k1
(d1 + 7t)) = u1},11{Lj2,n2a2+7n2,k2

(d1 + 7t)) = u2})

=
∑
u∈W

σ2
d1,u

(Θ)−
7∑

d2=1

∑
k∈D

Θk,d2

∞∑
n=0

∑
u1 6=u2

pd2+7n,k,u1(d(n))pd2+7n,k,u2(d(n)).

The first equality follows from the definition of variance. The second equality follows by applying

Lemma 2 (i) to all terms representing different patients and then applying Lemma 2 (ii) to those

terms representing the same patient visiting different wards at the same time. 2

Theorem 4

Proof. The CALM model daily workload is given by

C∞u,d1 =
7∑

d2=1

∑
k∈D

Xk,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}
(EC.11)

where Xk,d2 is the random number of admissions and Lj,nd2+7n,k(d1 + 7t) is the location process.

Because Xk,d2 and Lj,nd2+7n,k(d1 +7t) are independent the conditions for Wald’s equation hold so the

result is that

E[C∞u,d1 ] =
7∑

d2=1

∑
k∈D

E[Xk,d2 ]E

[
lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}]
(EC.12)
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=
7∑

d2=1

∑
k∈D

E[Xk,d2 ] lim
t→∞

t∑
n=0

E
[
11
{
Lj,nd2+7n,k(d1 + 7t) = u

}]
(EC.13)

=
7∑

d2=1

∑
k∈D

Θk,d2 ·
∞∑
n=0

pd2+7n,i,u(d1− d2 + 7(t−n)). (EC.14)

The first equality follows from Wald’s equation, the second equality follows from the monotone

convergence theorem, and the final equality follows from taking the expectation of Xk,d2 and the

indicator random variables. 2

Theorem 5

Proof. The CALM model daily workload is given by

C∞u,d1 =
7∑

d2=1

∑
k∈D

Xk,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}
(EC.15)

where Xk,d2 is the RV for number of admissions and Lj,nd2+7n,k(d1 + 7t) is the location process.

(i) Taking the variance of the workload yields:

V ar[C∞u,d1 ] =
7∑

d2=1

∑
k∈D

V ar

Xk,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}
=

7∑
d2=1

∑
k∈D

{
E[Xk,d2 ]V ar

[
lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}]
+

(
E

[
lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}])2

f(Θk,d)

}

=
7∑

d2=1

∑
k∈D

[
Θk,d2

∞∑
n=0

pd2+7n,k,u(d(n))(1− pd2+7n,k,u(d(n)))+

f(Θk,d)
( ∞∑
n=0

pd2+7n,k,u(d(n))
)2]

.

In the first equality, it is possible to bring the variance inside the sum because all of the random

variables are independent, from Lemma 2 (i). The second equality follows by conditioning on the

number of admissions Xk,d2 . The final equality follows by taking the variance and the expectation

on the inside of the sum following the same logic presented in Theorems 4 and 3.

(ii) Calculating the variance at the hospital level further requires a sum over all wards.

V ar[C∞d1 ] = V ar

∑
u∈W

7∑
d2=1

∑
k∈D

Xk,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}
=

7∑
d2=1

∑
k∈D

V ar

Xk,d2∑
j=0

∑
u∈W

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}
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=
7∑

d2=1

∑
k∈D

E[Xk,d2 ]V ar

[∑
u∈W

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}]
+

7∑
d2=1

∑
k∈D

(
E

[∑
u∈W

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}])2

f(Θk,d)

=
7∑

d2=1

∑
k∈D

Θk,d

∑
u∈W

∞∑
n=0

pd2+7n,k,u(d(n))(1− pd2+7n,k,u(d(n)))−

7∑
d2=1

∑
k∈D

Θk,d2

∞∑
n=0

∑
u1 6=u2

pd2+7n,k,u1(d(n))pd2+7n,k,u2(d(n))+

7∑
d2=1

∑
k∈D

(∑
u∈W

∞∑
n=0

pd2+7n,k,u(d(n))

)2

f(Θk,d) (EC.16)

=
∑
u∈W

7∑
d2=1

∑
k∈D

[
Θk,d

∞∑
n=0

pd2+7n,k,u(d(n))(1− pd2+7n,k,u(d(n)))+

f(Θk,d)

(
∞∑
n=0

pd2+7n,k,u(d(n))

)2 ]
−

7∑
d2=1

∑
k∈D

Θk,d2

∑
u1 6=u2

∞∑
n=0

pd2+7n,k,u1(d(n))pd2+7n,k,u2(d(n))+

7∑
d2=1

∑
k∈D

f(Θk,d2)
∑
u1 6=u2

(
∞∑
n=0

pd2+7n,k,u1(d(n))

)(
∞∑
n=0

pd2+7n,k,u2(d(n))

)
=
∑
u∈W

σ2
d1,u

(Θ)−

7∑
d2=1

∑
k∈D

Θk,d2

∑
u1 6=u2

∞∑
n=0

pd2+7n,k,u1(d(n))pd2+7n,k,u2(d(n))+

7∑
d2=1

∑
k∈D

f(Θk,d2)
∑
u1 6=u2

(
∞∑
n=0

pd2+7n,k,u1(d(n))

)(
∞∑
n=0

pd2+7n,k,u2(d(n))

)
. (EC.17)

The first equality follows from the fact that, for different k and d1, the random variables are

independent. The second equality follows by conditioning on the number of admissions, Xk,d. The

result follows from the fact that if their is independence between the random variables, conditioning

on the number of terms, N , of the sum gives V ar[
∑N

i=1Xi] =E[N ]V ar[Xi] + (E[Xi])
2V ar[N ]. For

the third equality, the first term derived by calculating V ar
[∑

u∈W limt→∞
∑t

n=0 11
{
Lj,nd2+7n,k(d1 +

7t) = u
}]

following the same arguments used in the proof of Theorem 3. The second term is

obtained by taking the expectation inside the sum. The fourth equality follows by expanding the

square and rearranging terms. The final equality follows by substituting the definition of σ2
d1,u

(Θ)

from Thm. 5 (i). 2
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Poisson Random Measure and Proofs of Statements

In this online appendix we provide a more detailed description of the basics of the Poisson

random measure (Section EC.1) and proofs of several statements from the body of the article

(Section EC.2).

EC.1. Poisson Random Measure.

We begin this section with some general definitions for point processes that we will use in the

construction of our emergency census process. These definitions and detailed analysis can be found

in Grandell (1977). The Poisson random measure is defined by its intensity measure, so we start

by defining M, the space in which the intensity measure lies as follows.

Definition EC.1. Let M be the set of measures µ on R+ such that µ(0) = 0 and µ(t)<∞ for

all t∈R+.

It is important for the analysis that a metric can be defined in M that makes M separable

and complete (see Grandell (1977)). Let B(M) be the Borel σ-algebra on M. To describe point

processes, it is necessary to also define the following space, N , which is important for the Poisson

random measure we wish to define because the Poisson distribution takes only integer values.

Definition EC.2. Let N = {µ ∈M : µ(t) ∈Z+ for all t ∈ [0,∞)} be the set of measures µ ∈M

that yield integer values.

Now we can define a random measure as

Definition EC.3. A random measure is a measurable mapping from the probability space

(Ω,B,P) into the measure space (M,B(M)) or (N ,B(N )) as the situation requires.

We characterize our PATTERN PALM Poisson random measure by extension of the standard

Poisson random measure, M, which we now define as in Grandell (1977) for clarity. Let Ω =R∞

and define an element ω ∈Ω by the process’s i.i.d. interarrival times: ω = (s0, s1, s2, . . .). Let B be

the natural σ-algebra on R∞ and P be defined as

P({ω ∈R∞ : sk ≤ x}) =

{
0 if x< 0
1− e−x if x≥ 0

. (EC.1)

That is, P assigns exponential probabilities with rate λ= 1 to each interarrival time, sk. Now the

standard Poisson random measure can be defined as

M(t,ω) =

{
k if

∑k−1

j=0 sj ≤ t,
∑k

j=0 sj > t and
∑∞

j=0 sj =∞
0 if s0 > t or if

∑∞
j=0 sj <∞

. (EC.2)
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Let the distribution of the standard Poisson random measure be Π̂, which is a probability

measure on (N ,B(N )) such that for any set A∈B(N ), Π̂{A}= P{M∈A}. The standard Poisson

random measure can be generalized by scaling time according to a deterministic intensity measure,

µ. By letting M◦µ= M(µ) :N ×M→N be a Poisson product measure with distribution denoted

Πµ, we obtain a random measure model for a Poisson process with intensity µ. A special case

is to let µ
(
(0, t]

)
= λt, in which case we get the traditional Poisson process with rate λ. In our

case, however, we are interested in allowing the intensity, which will be denoted by Λ, to be a

realization of a random measure as well. In particular, we want the intensity to represent the non-

stationary arrivals to the various wards of the hospital over time under a total arrival process that

is non-homogeneous Poisson, which yields a doubly stochastic Poisson process in the terminology

of Grandell (1977).

Let M̃ = M ◦Λ be a Poisson random measure on a product space N ×M, where the intensity

random measure Λ has distribution which is denoted by Π. The standard Poisson random measure,

M, has distribution Π̂, so the distribution of M̃ is then specified for any set B ∈N by

PΠ̃(B) = Π̂×Π({(ν,µ)∈N ×M : ν ◦µ∈B})

=

∫
M

Π̂({ν ∈N : ν ◦µ∈B})Π(dµ)

=

∫
M

Πµ(B)Π(dµ), B ∈B(N ), (EC.3)

where the first step follows from Fubini’s theorem (see Folland (1999)) and the definition of M◦µ.

It is important to note that Πµ(B) is a B(M)-measurable function in µ, so the preceding integral

is valid (see Grandell (1977)).

EC.2. Proofs

Theorem 1

Proof. We show the above result using proof by construction. We begin by focusing on the

blocking probabilities β̂i for i ∈ ξ. From Eq.’s 5, it is clear that p̂i,j =
pi,j

1−β̂j
. Substituting this into

Eq.’s 6, we get ∑
k∈ψ

pi,k =
∑
j∈ξ

β̂j

1− β̂j
pi,j for i∈ ξ. (EC.4)

Now we see that Eq.’s EC.4 represent a system of non-linear equations with n equations and n

unknowns. We now transform this non-linear system of equations into a system of linear equations

with a nonsingular coefficient matrix.
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in Eq.’s EC.4, we perform the following substitution to eliminate the non-linearity: let γj =
β̂j

1−β̂j
,

where γ = [γ1, . . . , γn]′ is a column vector. Now it is clear that Eq.’s EC.4 can be written as the

linear system given by

P ξγ = Pψ. (EC.5)

Given that P ξ has full rank, the solution to this system is given by γ = (P ξ)−1Pψ. Then we can

solve for β̂i by substituting the value obtained for each γj back into the equation γj =
β̂j

1−β̂j
. The

rest of the flow equations can be solved by substituting β̂j into Eq.’s 4 and 5. 2

Lemma 1

Proof. (i) First note that Γt,J =
⋃
j∈J Γt,j, where Γt,j is defined as in Eq. 1. Therefore

Ps,k(Γt,J ) =
∑
j∈J

Ps,k(Γt,j)−
∑

Ps,k(
⋂

any two events) +
∑

Ps,k(
⋂

any three events) + . . .

+ (−1)|J |+1P (
⋂
j∈J

Γt,j) =
∑
j∈J

Ps,k(Γt,j) =
∑
j∈J

ps,k,j(t− s)) (EC.6)

The first equality follows from the fact that Ps,k is a probability measure. The second equality

follows from the reasonable assumption that a patient can only be in one ward at a time, and

therefore the intersection of any two sets necessarily has measure zero. Because αk(·) is assumed

integrable and Λk,s(·, ·)∈ [0,1], then for any b∈R+
⋃
{∞}:

µk((a, b], t,J )≡E[Nk((a, b], t,J )] = E

[∫ b

a

αk(s)Λk,s(t,J )

]
=

∫ b

a

αk(s)E[Λk((s, t],J )]

=

∫ b

a

αk(s)Ps,k(Γt,J ) =

∫ b

a

αk(s)
∑
j∈J

ps,k,j(t− s)).

The first equality follows by applying the definition of Nk((a, b], t,J ). The second inequality follows

from the dominated convergence theorem. The third equality follows by applying the definition of

the random measure Λk from Eq. 8 and 9. The final equality follows from Eq. EC.6.

(ii) The location functions are easily seen to be right continuous, with limits from the left existing.

If we endow the function space Σ with the Skorohod J1 topology (as in Massey and Whitt (1993))

then Σ can be shown to be Polish, thereby removing measure theoretic complications. Because we

are modeling patient location by day, our PATTERN process has only finitely many jumps and

the total length of stay is finite. Additionally, the probability measure Ps,k is a measure on Σ and

is a measurable function of s, so the integral is valid.

Now we show that µk is a measure. First, it is clear that µk(∅) = 0. Secondly, integrals over

disjoint sets are countably additive resulting in the countable additivity of µk. That is, if we let

Ei = (ai, bi]× ti×Ji, then

µk( lim
n→∞

n⋃
i=1

Ei) =
∞∑
i=1

∫ bi

ai

αk(s)
∑
j∈Ji

ps,k,j(ti− s)ds=
∞∑
i=1

µk(Ei) (EC.7)
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This directly results in countable additivity of the measure µk, therefore µk is a measure. 2

Theorem 2

Proof. From Appendix EC.1, we know that we can extend the standard Poisson random mea-

sure with an intensity measure. From Lemma 1, we know that the deterministic intensity, µk, is in

fact a measure. Therefore the product form result for each patient type then follows directly from

the properties of the Poisson random measure and the fact that we are considering disjoint subsets

of R×R×S (e.g. one for each pair of ward and patient type).

Finally, the number of patients in a given ward is just the sum over all patient types,

M1 + M2 + . . .+ Mn, (EC.8)

which is Poisson with rate
∑n

k=1 γk =
∑n

k=1

∫ t
t−τk

αk(s)ps,k,j(t− s), because the sum of independent

Poisson random variables is Poisson with a rate that is the sum of the individual rates. 2

Lemma 2

Proof. (i) Each pair of indicators where (j1, n1, k1, s1) 6= (j2, n2, k2, s2) represents two different

patients. Therefore the two indicator random variables are independent, which follows from our

assumption that the care paths of two different patients are independent. To see that each pairing

does indeed represent two different patients, note that each patient’s stochastic process is uniquely

indexed by the patient type, k, the week in which they are admitted, n, the day of the week they

were admitted, s, and their admission number on the day they are admitted, j. Therefore the

indicators 11{Lj1,n1s1,k1
(t) = u1} and 11{Lj2,n2s2,k2

(t) = u2} are independent and their covariance term is

necessarily zero.

(ii) In this case the two indicators represent the same patient at the same point in time. In this

case, the two indicator random variables are not independent, since if a patient is in ward u1 at

time t they are clearly not in ward u2 6= u1. For such pairs the covariance becomes

Cov
(
11{Lj,ns,k(t) = u1},11{Lj,ns,k(t) = u2}

)
=

E
[
11{Lj,ns,k(t) = u1},11{Lj,ns,k(t) = u2}

]
−E

[
11{Lj,ns,k(t) = u1}

]
E
[
11{Lj,ns,k(t) = u2}

]
=

P (Lj,ns,k(t) = u1,L
j,n
s,k(t) = u2)−P (Lj,ns,k(t) = u1)P (Lj,ns,k(t) = u2) =−ps,k,u1(t)ps,k,u2(t). (EC.9)

The last equality follows because the probability that a patient is in ward u1 and in ward u2

simultaneously is assumed to be zero. 2

Theorem 3
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Proof. (i) In calculating ward census (see Eq. 18) any two indicator variables in the sum have the

property that (j1, n1, k1, s1) 6= (j2, n2, k2, s2), because the sum in Eq. 18 contains each combination

of (j, k,n, s) at most once. Therefore the covariance is zero by Lemma 2 (i). Thus the variance of

the ward census can be calculated by

σ2
d1,u

(Θ) = Var
[ 7∑
d2=1

∑
k∈D

Θk,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t)) = u

}]
=

7∑
d2=1

∑
k∈D

Θk,d2 lim
t→∞

t∑
n=0

pd2+7n,k,u(d1− d2 + 7(t−n))(1− pd2+7n,k,u(d1− d2 + 7(t−n))). (EC.10)

The second equality follows by taking the variance inside the sum and from the fact that 11{·} is

a Bernoulli random variable with variance p(1− p).

(ii) Now consider the variance of the total hospital census. For all indicators where (j1, n1, k1, s1)

6= (j2, n2, k2, s2), the covariance is zero by Lemma 2 (i). However, since we are now summing over all

wards, there are pairs of indicators for which this condition does not hold (i.e. we are considering

whether a given patient is contributing to ward u1 or to ward u2 on a given day).

σ2
d1

(Θ) =
2∑
i=1

7∑
ai=1

∑
ki∈D

Θki,ai∑
ji=1

lim
t→∞

t∑
ni=0

∑
ui∈W

Cov(11{Lj1,n1a1+7n1,k1
(d1 + 7t)) = u1},11{Lj2,n2a2+7n2,k2

(d1 + 7t)) = u2})

=
∑
u∈W

σ2
d1,u

(Θ)−
7∑

d2=1

∑
k∈D

Θk,d2

∞∑
n=0

∑
u1 6=u2

pd2+7n,k,u1(d(n))pd2+7n,k,u2(d(n)).

The first equality follows from the definition of variance. The second equality follows by applying

Lemma 2 (i) to all terms representing different patients and then applying Lemma 2 (ii) to those

terms representing the same patient visiting different wards at the same time. 2

Theorem 4

Proof. The CALM model daily workload is given by

C∞u,d1 =
7∑

d2=1

∑
k∈D

Xk,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}
(EC.11)

where Xk,d2 is the random number of admissions and Lj,nd2+7n,k(d1 + 7t) is the location process.

Because Xk,d2 and Lj,nd2+7n,k(d1 +7t) are independent the conditions for Wald’s equation hold so the

result is that

E[C∞u,d1 ] =
7∑

d2=1

∑
k∈D

E[Xk,d2 ]E

[
lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}]
(EC.12)
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=
7∑

d2=1

∑
k∈D

E[Xk,d2 ] lim
t→∞

t∑
n=0

E
[
11
{
Lj,nd2+7n,k(d1 + 7t) = u

}]
(EC.13)

=
7∑

d2=1

∑
k∈D

Θk,d2 ·
∞∑
n=0

pd2+7n,i,u(d1− d2 + 7(t−n)). (EC.14)

The first equality follows from Wald’s equation, the second equality follows from the monotone

convergence theorem, and the final equality follows from taking the expectation of Xk,d2 and the

indicator random variables. 2

Theorem 5

Proof. The CALM model daily workload is given by

C∞u,d1 =
7∑

d2=1

∑
k∈D

Xk,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}
(EC.15)

where Xk,d2 is the RV for number of admissions and Lj,nd2+7n,k(d1 + 7t) is the location process.

(i) Taking the variance of the workload yields:

V ar[C∞u,d1 ] =
7∑

d2=1

∑
k∈D

V ar

Xk,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}
=

7∑
d2=1

∑
k∈D

{
E[Xk,d2 ]V ar

[
lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}]
+

(
E

[
lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}])2

f(Θk,d)

}

=
7∑

d2=1

∑
k∈D

[
Θk,d2

∞∑
n=0

pd2+7n,k,u(d(n))(1− pd2+7n,k,u(d(n)))+

f(Θk,d)
( ∞∑
n=0

pd2+7n,k,u(d(n))
)2]

.

In the first equality, it is possible to bring the variance inside the sum because all of the random

variables are independent, from Lemma 2 (i). The second equality follows by conditioning on the

number of admissions Xk,d2 . The final equality follows by taking the variance and the expectation

on the inside of the sum following the same logic presented in Theorems 4 and 3.

(ii) Calculating the variance at the hospital level further requires a sum over all wards.

V ar[C∞d1 ] = V ar

∑
u∈W

7∑
d2=1

∑
k∈D

Xk,d2∑
j=0

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}
=

7∑
d2=1

∑
k∈D

V ar

Xk,d2∑
j=0

∑
u∈W

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}
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=
7∑

d2=1

∑
k∈D

E[Xk,d2 ]V ar

[∑
u∈W

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}]
+

7∑
d2=1

∑
k∈D

(
E

[∑
u∈W

lim
t→∞

t∑
n=0

11
{
Lj,nd2+7n,k(d1 + 7t) = u

}])2

f(Θk,d)

=
7∑

d2=1

∑
k∈D

Θk,d

∑
u∈W

∞∑
n=0

pd2+7n,k,u(d(n))(1− pd2+7n,k,u(d(n)))−

7∑
d2=1

∑
k∈D

Θk,d2

∞∑
n=0

∑
u1 6=u2

pd2+7n,k,u1(d(n))pd2+7n,k,u2(d(n))+

7∑
d2=1

∑
k∈D

(∑
u∈W

∞∑
n=0

pd2+7n,k,u(d(n))

)2

f(Θk,d) (EC.16)

=
∑
u∈W

7∑
d2=1

∑
k∈D

[
Θk,d

∞∑
n=0

pd2+7n,k,u(d(n))(1− pd2+7n,k,u(d(n)))+

f(Θk,d)

(
∞∑
n=0

pd2+7n,k,u(d(n))

)2 ]
−

7∑
d2=1

∑
k∈D

Θk,d2

∑
u1 6=u2

∞∑
n=0

pd2+7n,k,u1(d(n))pd2+7n,k,u2(d(n))+

7∑
d2=1

∑
k∈D

f(Θk,d2)
∑
u1 6=u2

(
∞∑
n=0

pd2+7n,k,u1(d(n))

)(
∞∑
n=0

pd2+7n,k,u2(d(n))

)
=
∑
u∈W

σ2
d1,u

(Θ)−

7∑
d2=1

∑
k∈D

Θk,d2

∑
u1 6=u2

∞∑
n=0

pd2+7n,k,u1(d(n))pd2+7n,k,u2(d(n))+

7∑
d2=1

∑
k∈D

f(Θk,d2)
∑
u1 6=u2

(
∞∑
n=0

pd2+7n,k,u1(d(n))

)(
∞∑
n=0

pd2+7n,k,u2(d(n))

)
. (EC.17)

The first equality follows from the fact that, for different k and d1, the random variables are

independent. The second equality follows by conditioning on the number of admissions, Xk,d. The

result follows from the fact that if their is independence between the random variables, conditioning

on the number of terms, N , of the sum gives V ar[
∑N

i=1Xi] =E[N ]V ar[Xi] + (E[Xi])
2V ar[N ]. For

the third equality, the first term derived by calculating V ar
[∑

u∈W limt→∞
∑t

n=0 11
{
Lj,nd2+7n,k(d1 +

7t) = u
}]

following the same arguments used in the proof of Theorem 3. The second term is

obtained by taking the expectation inside the sum. The fourth equality follows by expanding the

square and rearranging terms. The final equality follows by substituting the definition of σ2
d1,u

(Θ)

from Thm. 5 (i). 2
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