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Abstract

In this paper we present a new perspective on ßexibility in manufacturing and service op-
erations by exploring a type of operational ßexibility that we term �structural ßexibility�. We
focus on strategic level issues of how ßexibility can be created by using multipurpose resources
such as cross trained labor, ßexible machines, or ßexible factories. The proposed structural
ßexibility method uses the structure of the capability pattern to generate indices that quantify
the ability of a system to respond to variability in its environment. Simulations of serial and
parallel queueing networks provide evidence that this index is useful in predicting the perfor-
mance rank of alternative designs for implementing multi-functionality in the face of variability.
The proposed methodology supports managerial insight into structural design of manufacturing
and service systems at the strategic level.
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1 Introduction

Flexibility is a very general concept that is often viewed as a Þrm�s ability to match production

to market demand in the face of uncertainty and variability. The notion of ßexibility is also

closely linked to the Þrm�s ability to provide niche and customized products to the consumer.

Workforce management, supply chain management, and ßexible manufacturing are undergoing

dramatic development to achieve ßexibility using a variety of mechanisms such as cross-trained

labor, enhanced use of information systems, improved logistics, small batch sizes, delayed product

differentiation, and multi-purpose machines/tools.

A growing literature has focused on developing a deeper understanding of how cross-training

and/or ßexible equipment can be appropriately used to improve productivity and provide greater

performance in servicing a variety of types of demand (see Hopp and Van Oyen 2004b for strategic

and tactical frameworks with a literature survey). Behind much of this literature is an intuitive
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notion of ßexibility. It does not, however, appear to us that there currently exists a mathematical

deÞnition of ßexibility that is broadly useful. Sethi and Sethi (1990) express the challenge as follows:

�The literature makes one thing abundantly clear: ßexibility is a complex, multidimensional, and

hard-to-capture concept.�

Variability in demand (and/or capacity) deteriorates system performance. When shifts in av-

erage demand are long-term or permanent shifts, the solution is often to increase source capacities

(an expensive option). If the increase in demand is not long-term or not sufficiently large, then

increasing capacity may result in underutilization of investment in periods that demand is low. An

option receiving growing interest is to enable sources to respond to more than one demand type,

so they adapt to changes. Now the question becomes how to add capabilities to sources in order to

provide robust performance despite demand shifts and uncertainty (variability). By �capability�

we mean the ability of a source to process a demand type. Workers who are cross-trained, ma-

chines that are ßexible, and factories that can reallocate production across multiple products are

all examples of production sources with multiple capabilities. In these examples, classes of tasks,

jobs, and products, respectively, are the demand types. Consider Figure 1, which represents three

different ways that sources can be given capabilities to serve four demand types. For example,

in Figure 1(B), source S2 has two capabilities which allow it to process both type 1 and type 2

demands. In a call center cross-training application, this would mean that agent S2 is trained and

equipped to handle both type 1 and type 2 calls. Every source has a �capability set� indicating the

demand types that it can serve. In this example, the capability set of S2 is {1, 2}. The ensemble

of capability sets for all the sources creates a graph termed a �structure� (see Figure 1 for three

particular structures).

This paper treats a model of an operation with N production sources facing K types of demand.

We develop a simple method that computes an index for each alternative structure, which can then

be used to predict which structure has better and more robust performance, without needing precise

information regarding the patterns of the changes in the system. Our focus is on providing insight

into the importance of the system structure as a vehicle toward ßexibility.

It is important to emphasize that our method seeks to address applications in which precise

information regarding the environment (i.e., demand or capacity) is not available, or if it is available,

it is not reliable for planning purposes since it changes rapidly over time. Examples include call
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arrival processes in call centers, which are known to change rapidly throughout the day, and the

processing time distributions in a make-to-order mixed-model production system due to shifting in

product mix as demand changes. As an example of uncertain changes in capacity, consider a labor-

intensive production operation with multiple shifts. From one shift to another, the operation will

have different workers with different speeds, as well as ßuctuations caused by worker absenteeism.

In all the above examples, it is important that the design of the capability structure not be tied to

a speciÞc demand or capacity pattern, since that would reduce the robustness of the system with

respect to changes in its environment. A method such as ours that provides direction in achieving

ßexibility given some rough idea of the relative demand or capacity levels Þts well with strategic

level and long-term decisions, where accurate data and forecasts are usually unavailable. It provides

managers with a better intuition about the relationship between the selection of a system structure

and the resulting ßexibility.

Our work addresses key issues such as the following:

1. The authors are aware of the philosophy prevalent at a large U.S. technology company which
views employee training as an inherently good thing. The company lacks a corresponding
emphasis on strategically selecting the training choices that will yield the most beneÞt to the
company. Is it sufficient for a company to provide good access to training, or is it important
that training and cross-training be purposefully and carefully selected so as to create a more
ßexible system?

2. Can a simple algorithm be developed to assist managers in determining a good strategy for
investing in new capabilities in the absence of precise information for system capacity or
demand?

3. Are there any canonical capability structures that provide superior ßexibility and can serve
as a basis for strategy in creating an effective structure of capabilities?

2 System Structure: A Means for Buffering Against Variability

The effects of variability in demand can be mitigated by either increasing capacity or increasing

the ßexibility of available capacity (e.g., using production sources with multiple capabilities).

To show how production sources with multiple capabilities can be used to create a structure

that effectively buffers against variability, consider a system with four such �sources� serving four

�demand types.� In Figure 1, a link between source Si and demand type Dj indicates that source

Si is capable of serving demand type Dj (e.g., worker skill, machine capability, plant/product
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Figure 1: Three different examples of four sources serving four demand types.

allocation, etc.). In Figure 1(A) the capacity of a production source Si is exclusively devoted to

one demand type, while in Figure 1(B) and 1(C), each source can serve two different demand types.

If each source has unit capacity and the demands all require 1 job per unit time, then all three

system structures have the same performance in the absence of variability in demand and/or source

capacity. Consider now a system with variability in demand, where Di may equally likely be 1− δ,

1, or 1 + δ, for some δ ∈ [0, 1]. Consider a month in which D3 = D4 = 1, while demand D1 is

1 + δ, and demand D2 is 1 − δ. The structure in Figure 1(A) can only respond to the increase

in demand D1 by increasing its capacity at source S1, (i.e., increasing capacity as the means of

buffering against variability). However, the system cannot utilize the δ additional units of unused

capacity of source S2 (since D2 has fallen by δ). In the structure in Figure 1(B), however, S2 can

use up to δ of its unused capacity for demand type 1 as needed. The structure in Figure 1(C) can

also allocate the unused capacity of S2 to accommodate the increase in D1 as follows: S1 can assign

its capacity to D1, while S2 assigns 1− δ units of its capacity to D2, and δ units to D3. S3 assigns

1− δ units to D3 and δ units to D4. S4 assigns 1− δ units of its capacity to D4 and δ units to D1.

Now consider a month, in which D2 = D4 = 1, while demand D1 is 1 + δ, and demand D3 is

1 − δ. Under these circumstances, δ units of capacity must be shifted from source S3 to source

S1 during that month. As it is clear in the Þgure, only the structure in Figure 1(C) is capable of

shifting the unused capacity of source S3 to S1. In fact, in 3
4 = 81 combinations of demand levels

with values 1−δ, 1, or 1+δ for types 1 through 4, the structure in Figure 1(C) is capable of handling

all 50 cases where the total demand from types 1 through 4 is not more than 4, the total available

capacity in the system (i.e.,
!4
i=1Di ≤ 4). Structure (B) can handle 36 cases, and structure (A)

can handle only 16 cases. In a stochastic demand environment, structure (C) seems more capable
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of dealing with changes in demand and thus is more ßexible than the other two structures.

As we described above, in multiple-resource systems, capacity can be used in two different ways

to buffer against variability: (i) increasing source capacities, or (ii) directly or indirectly shifting

capacity among sources. The ability to shift capacity is the result of capability patterns of sources or

what we call �system structure� in this paper. This motivates the fundamental concepts underlying

our new �Structural Flexibility.�

DeÞnition: Structural ßexibility is a system�s ability, provided by its structure of multi-capability

sources, to reallocate production to respond to changes in demand (e.g., volume, work content,

product mix, etc.) or in source capacity (e.g., absenteeism, breakdowns, rework, etc.).

Next, we introduce two examples illustrating the concept of structural ßexibility. Example 1

deals with the problem of allocating the production capacity of four plants to four different demands

(an open parallel network ßow). Example 2 looks at workers� training in a serial-ßow production

line (a closed serial network ßow).

2.1 Example 1: Plant Capacity Allocation

Consider a company that has four (N = 4) production plants (sources) S1, S2, S3, and S4 which

are used to produce four different products (K = 4) with monthly demand type arrival rates Di,

i = 1, 2, 3, 4. Interpreting sources as plants and their products as demand types, the capability

structures of Figure 1 show three different ways (A, B, and C) of designing the production sources

to produce different demand types. According to our capacity shifting argument, we expect that

product/plant allocation structure(C) provides more ßexibility and performs better than the other

two in the face of variability in demand. This has been conÞrmed by Jordan and Graves (1995),

that proposes structure (C) (which they called a �Chain structure�) to be a ßexible structure for

plant capacity in the auto industry.

2.2 Example 2: Cross-training Workers in CONWIP Lines

Figure 2 illustrates a serial production line with four work stations and four workers W1, W2, W3

and W4 operated under a CONstant Work In Process (CONWIP) release policy (see Hopp and

Spearman, 2000). SpeciÞcally, CONWIP refers to a job release policy that will release a job to

station 1 only upon completion of a job from the line (the total WIP in the system is kept at the

5



ThroughputRaw Material

Empty Pallet

W

W

W

W

1

2 3

4

Scenario  A Scenario  B

ThroughputRaw Material

Empty Pallet

W

W

W

W

1

2 3

4

ThroughputRaw Material

Empty Pallet

W

W

W

W

1

2 3

4

Scenario  C

Figure 2: Worker assignment scenarios for CONWIP production line example.

constant CONWIP level).

A similar capacity shifting argument can be used to show that cross-training structure in Figure

2(C) is more ßexible than the other two, and therefore it performs better in the face of variability

in job processing times. For example, suppose that during a shift job processing times at work

stations 2 and 4 are 1 unit, but processing times at work stations 1 and 3 are 1 + δ and 1 − δ,

respectively. In that shift, work station 1 becomes the bottleneck, and under the cross-training

structures in Figures 2(A) and 2(B) the throughput of the line reduces to TH = 1/(1+ δ) per unit

time. However, under the structure in Figure 2(C), the (δ× 100)% idle time (i.e., unused capacity)

of worker W4 can be used (i.e., shifted) to help cover the extra time δ at the bottleneck station.

This keeps the throughput of the line steady at TH = 1 per unit time in that shift. The system in

Figure 2(C) is called a �2-skill chain� by Hopp et al. (2004a, 2004b), and has been shown to be a

very ßexible and effective cross-training structure for workers in a CONWIP line.

3 Literature Survey

The work on ßexibility is very broad, but we cite some of the more germane work here. De

Groote (1994) creates a general framework to characterize ßexibility and its inßuences. Sethi and

Sethi (1990) provide a survey of notions of ßexibility dating back to the 1920�s. They deÞne 11

types of ßexibility and characterize published notions of ßexibility under one of these categories.

Our treatment of ßexibility can address issues labeled in their taxonomy as �machine ßexibility,�

�product ßexibility,� �routing ßexibility,� �volume ßexibility,� and �market ßexibility�.

Many studies have been done on the use of cross-trained workers, especially in serial production
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lines: Ahn et al. (1999), Andradottir et al. (2001), Bartholdi and Eisenstein et al. (1996), Bartholdi

et al. (2001), Berman et al. (1997), Duenyas et al. (1998), Gel et al. (2000, 2001), Iravani et al

(1997a, 1997b), and McClain et al. (2000) among many others. For work on parallel systems, Pinker

and Shumsky (2000) address cross-training, turnover, and quality in call centers, while Mandelbaum

and Reiman (1998) focus on the impact of pooling in general networks. Pooling is referred to as

collaboration by Van Oyen et al. (2001), who tackle the optimal control and performance analysis

of open and closed production lines.

The notion of a chain was introduced in Jordan and Graves (1995) in the context of process

ßexibility for a single-stage manufacturing system with random demand and deterministic produc-

tion. This work was extended to multi-stage manufacturing systems by Graves and Tomlin (2003).

Sheikzadeh et al. (1998) used it to analyze equipment ßexibility. Hopp et al. (2004a) use queue-

ing models of ßexible workers in serial production systems operating under a CONWIP protocol to

show that the 2-skill chaining structure possesses strong capacity balancing and variability buffering

properties Our methodology gives insight into why chains are so effective.

Gurumurthi and Benjaafar (2001) relate ßexibility and throughput under varying parameters,

congruent with the observations made in Hopp et al. (2004a). They modeled ßexible queueing

systems as a connected bipartite undirected graph, a similar representation to the one we develop

here (see also Graves and Tomlin (2003) and Aksin and Karaesmen (2002)).

Aksin and Karaesmen (2002) address ßexibility in loss systems with parallel ßow using a graph-

theoretic approach to determine the maximum throughput achievable under a particular network

structure. They carefully explore the space of symmetric, connected networks to emphasize the

superiority of such structures to alternatives. They show that a throughput bound is increasing and

convex in the number of capabilities, and they demonstrate conditions under which it is desirable

to balance the number of capabilities of the workers and/or balance the number of workers that are

trained for each demand type. Our work differs from theirs in that our work focuses on structure

and therefore can be applied to both serial and parallel and both open and closed networks (with

an obvious generalization to other network topologies).
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4 Structural Flexibility Measures

4.1 The Concept of �Fit�: A Requirement for Proper Utilization of Capacity

Most production and service operations are designed with sufficient capacity to meet the average

demand for purposes of stability. Consider source capacity vector C = (C1, C2, . . . , CN ), which rep-

resents the (average) capacities of resources 1 to N , and the demand vector D = (D1,D2, . . . ,DK)

which represents the average demand rate for types 1 to K.

DeÞnition: A structure �Þts� an environment with source capacity vector C and demand vector
D if it is possible to allocate source capacities in such a way that each demand type is satisÞed on

average.

Fitness of a structure, also referred to as capacity balancing, has been considered by other studies

on parallel queues with resource pooling, mostly in heavy traffic (see Stolyar (2004), Williams

(2000), Harrison and Lopez (1999), and references therein). In most of these studies a linear

programming model is used to Þnd the resource pooling scenario that ensures that all demands

receive the proper capacity. In the case of closed queueing systems such as our CONWIP line

example, Þtness of a structure is not required to gain stability; rather, to ensure that the system

properly utilizes its capacity so that it does not restrict throughput. Note that the condition that

a structure must Þt its environment is not sufficient for ßexibility.

4.2 Structural Flexibility Matrix

We use our example in Section 2 to describe our method. Consider case (C) of Figure 1 where

the demand vector is perturbed so that D3 declines by amount δ in a particular month and D1

increases by δ. If capacity is tight, then δ units of capacity must be shifted from source 3 to source

1 during that month.

Under this assumption, Figure 3 shows two different paths from nodeD3 to nodeD1 in the graph

of Scenario C. Each path represents a different way of assigning the unused production capacity

for product 3 to produce product 1. The Þrst path on the left, D3 → S2 → D2 → S1 → D1,

corresponds to the following reassignment of production sources: The excess capacity δ available

for product 3 releases δ units of capacity of S2. Therefore, S2 will be able to produce δ units more of

product 2, which in turn releases δ more units of capacity of S1 that can be used to satisfy the extra
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Figure 3: Two paths to shift unused capacity from product 3 to produce product 1 in Scenario 1(C).

demand δ for product 1. The path on the right of Figure 3 is another way of transferring excess

capacity for product 3 to respond to the excess demand for product 1: D3 → S3 → D4 → S4 → D1.

The ability of Scenario C to respond to changes using more paths than Scenarios A or B

is ßexibility inherent in the structure � structural ßexibility. Thus, we capture the structural

ßexibility by counting the total number of nonoverlapping paths a system can use to respond to a

particular change in demand. Consistent with the deÞnition of structural ßexibility in Section 2,

we propose the SF method to quantify the ability to shift internal capacity to respond to shifts in

demand using the graph of a structure. The SF method translates a structure into a �Structural

Flexibility matrix� (SF matrix),M . Let mij be the total number of nonoverlapping paths by which

the excess capacity for product i can be redirected to produce product j (for the above example

m3,1 = 2). We deÞne matrix M as the matrix with elements mij for all i %= j, i, j = 1, 2, . . . , K.

Note that the element mij of the SF matrix can be obtained by solving a max ßow problem in

which the starting node is demand node Di and the sink node is demand node Dj. The capacity of

each arc is one, and thus mij is the maximum ßow that can be transfered from Di to Dj. To obtain

the SF matrix for a system with K nodes, K(K − 1)/2 max ßow problems must be solved, since

the SF matrix is symmetric (see online Appendix II for a summary of the max ßow formulation).

Since transferring excess capacity from product i to produce product i does not make clear sense,

mii, the diagonal elements of M are handled differently. A system is more ßexible for changes in

demand type i if more production sources are capable of supplying demand type i. Therefore, we

let mii be the total number of arcs connected to demand node i. Consequently, the SF matrix for

the three scenarios become:
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MA =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ MB =

⎛⎜⎜⎜⎝
2 2 0 0
2 2 0 0
0 0 2 2
0 0 2 2

⎞⎟⎟⎟⎠ MC =

⎛⎜⎜⎜⎝
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

⎞⎟⎟⎟⎠
Our methodology, the structural ßexibility (SF) method, is based on M . It seems reasonable

to expect that the larger the elements of this matrix, the more ßexibility the system has.

4.3 The Structural Flexibility Indices

Our focus is on using the SF matrix to rank the ßexibility of connected structures, where the term

connected refers to those with at least one path through the structure between any demand node i

and j. When the graph of a structure consists of 2 or more connected subgraphs, analysis becomes

very complicated and further development is needed in such cases. In order to be able to compare

the ßexibility of two different structures, we need to further compact the information in our matrix

in the form a scalar, which we name �Structural Flexibility index.� We develop two candidates:

(i) the mean index, and (ii) the eigenvalue index.

4.3.1 Mean Index

It is clear that SF matrices with larger elements (numbers) represent more ßexible structures. On

the other hand, matrices with larger elements will have a larger mean. We deÞne the Mean Index

Ime(M) as the mean of all the elements in M . Although the mean of the elements of SF matrix

is an indicator of how large the elements of the matrix are, it is not sensitive to the location of

the larger elements of the matrix. For example, several different matrices can have the same mean.

This is one motivator for our next index.

4.3.2 Dominant Eigenvalue

For a system with K demand types, the structural ßexibility matrix M has K eigenvalues θ1(M),

θ2(M ), . . . , θK(M) and corresponding eigenvectors Θ1(M),Θ2(M), . . . ,ΘK(M). Since M is real,

symmetric, and nonnegative, its eigenvalues are real and nonnegative. We deÞne the Eigenvalue

Index Iei(M) to be the dominant eigenvalue θ∗(M) of M , where Iei(M) = θ∗(M) = maxi {θi(M)} .

Dominant eigenvalues can also be considered as an indication of the magnitude of elements of a

matrix (see on-line Appendix III). It can be shown that, as any element of the SF matrix increases
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(i.e., more ßexibility), the dominant eigenvalue of the matrix increases. The eigenvalue index is

sensitive to the location and variation of the elements of the SF matrix, and different matrices with

the same mean index almost always have different dominant eigenvalues.

5 Evaluating the Performance of the SF Indices

In this section, we use a numerical study to evaluate the ability of mean and eigenvalue indices

to predict the performance of a structure. We benchmark their performances against two key

alternatives, namely the number of arcs index, and the Jordan and Graves (JG) index.

The number of arcs index is based on the simple intuition that each arc adds ßexibility. We

deÞne the Number of Arcs Index, Iar, of a structure to be the sum of the number of capabilities of

all sources. Connecting it to the SF matrix M with diagonal elements mii, we see that the number

of arcs is Iar =
!K
i=1mii; hence, the number of arcs index is actually based only on the diagonal

of our SF matrix.

The JG index, IJG, is a detailed heuristic metric developed by Jordan and Graves (1995)

for measuring ßexibility in parallel systems of ßexible factories based on an approximation of the

probability of not being able to satisfy demand over a chosen production period (see Jordan and

Graves 1995, Page 588). Obtaining this index requires detailed probability distributions of capacity

and demand. For deterministic production times and normally distributed demand, Jordan and

Graves (1995) provides an expression for computing the JG index. When production times are

stochastic, or demand is not normally distributed, this index can only be obtained by complex

stochastic modeling or computer simulation (which we used as described in the on-line Appendix

IV).

5.1 Structures and Environments

Next, we describe an application of our method, which will also give the rationale for our evaluation

approach. Consider the problem of designing a production line and assume that, at the strategic

planning level, management intends to use this line for many models of the same products, both

now and when future products are launched. The sequence of steps in production is known (there

are 10), but precise distributions of work content at each stage cannot be determined. Due to the

nature of the products and the processes at each stage, they can only estimate the relative amount

11



1

2

3

4

6

1

1

1

1

1

1

c

a

b

d

e

f

7

8

5

9

10

g

h

i

j

1

1

1

1 0.5

0.5

2

1

1

1

1

1

1

1

STRUCTURE 1-1

1

2

3

4

6

1

1

1

1

1

1

c

a

b

d

e

f

7

8

5

9

10

g

h

i

j

1

1

1

1 0.5

0.5

2

1

1

1

1

1

1

1

STRUCTURE 1-2

1

2

3

4

6

1

1

1

1

1

1

c

a

b

d

e

f

7

8

5

9

10

g

h

i

j

1

1

1

1 0.5

0.5

2

1

1

1

1

1

1

1

STRUCTURE 1-3

1

2

3

4

6

1

1

1

1

1

1

c

a

b

d

e

f

7

8

5

9

10

g

h

i

j

1

1

1

1 0.5

0.5

2

1

1

1

1

1

1

1

STRUCTURE 1-4

Figure 4: Structures that Þt demand vector D1 = (2, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5).

of work (i.e., average processing time for standard workers) as D1 = (2, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5).

The focus is on choosing a worker cross-training structure for a 10-worker, 10-station production

line under a CONWIP release policy that robustly provides a high throughput under a wide range

of WIP levels and workload variability assumptions. The worker cross-training must be chosen

independent of the (tactical) decision of setting the WIP level, because it will vary as production

schedules change over time. Suppose we desire a cross-training design which for practical reasons

(e.g., training costs, learning time, walk times, etc.) uses exactly two skills per worker. Figure 4

shows 4 capability structures that Þt the demand environment D1.

This is an example of a difficult design problem based on limited system data. We will show

that our SF method can predict the best capability structure without the need for simulation to

perform a rigorous evaluation. We have identiÞed four additional demand vectors to provide a

useful test suite within our computational power to benchmark for both closed serial and open

parallel systems:

D1 = (2, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5) D4 = (0.5, 0.5, 1, 1, 2, 2, 1, 1, 0.5, 0.5)

D2 = (1.5, 1.5, 1.5, 0.5, 0.5, 0.5) D5 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

D3 = (1.5, 1, 0.5, 0.5, 1, 1.5)

Cases D1 through D4 possess variation in demand rate, while D5 has a uniform demand across

types. Figures 4, 5, 6, 7, and 8 show the test suites of structures for our Þve demand vectors.

For each environment, our test suite was devised to include multiple structures with unit capac-
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Figure 5: Structures that Þt demand vector D2 = (1.5, 1.5, 1.5, 0.5, 0.5, 0.5).

ity that Þt that environment, and satisfy the condition that a source can allocate its effort equally

across its capability set. For example, in Structure 1-1, sources 1, 2, 3, and 4 (each with capacity 1)

have two capabilities and in every case one includes the capability to serve demand type 1. Demand

type 1, having a magnitude of 2 can be met under our condition that each source must devote 50%

of its effort to demand type 1. This approach also ensures that the structure Þts the environment.

This condition is consistent with the approach taken in Aksin and Karaesmen (2002). Note that

while Þtness of a structure tends to balance capacity among demands, this condition is made to

balance the effort of production sources among their capabilities (arcs). We would like; however,

to emphasize that, in half of our test cases (i.e., models with shocks to the arrival rates (parallel

cases) or process times (serial cases)), this assumption is violated, since the sources will allocate

their effort asymmetrically across their capabilities over time in order to respond to the shocks.

Table 1. Eigenvalue, mean, and number of arcs indices for patterns under study.
Demand Patterns
Vector Index 1 2 3 4 5 6 7 8 9

D1 Eigenvalue 11.33 11.85 14.73 17.32
Mean 1.12 1.16 1.40 1.66

# of arcs 20 20 20 20

D2 Eigenvalue 6.97 7.65 8.61
Mean 1.14 1.22 1.83

# of arcs 11 12 12

D3 Eigenvalue 7.53 7.61 8.34 8.46 9.58
Mean 1.22 1.22 1.33 1.33 1.50

# of arcs 12 12 12 12 12

D4 Eigenvalue 11.46 12.80 21.04 21.71
Mean 1.12 1.22 2.10 2.16

# of arcs 20 20 26 28

D5 Eigenvalue 16.00 18.25 20.93 23.68 24.00 26.17 32.00 34.12 40.52
Mean 2.00 2.25 2.53 2.91 3.00 3.25 4.00 4.25 5.06

# of arcs 16 20 24 26 24 28 32 36 42

The test suite includes �tough cases� in which structures have the same number of total skills

and almost the same number of skills per worker. Structures for demand vectors D1 and D3 have
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Figure 6: Structures that Þt demand vector D3 = (1.5, 1, 0.5, 0.5, 1, 1.5).
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Figure 7: Structures that Þt demand vector D4 = (0.5, 0.5, 1, 1, 2, 2, 1, 1, 0.5, 0.5)

precisely the same total number of capabilities, which requires a powerful index to truly capture the

interconnection effects, not merely the number of arcs. These cases are typical of design problems

with a Þxed �budget� on the number of capabilities. Structure 2-1 for demand vector D2 has 11

arcs, but 2-2 and 2-3 both have 12. Cases D4 and D5 include a greater number of structures, as

they allow the number of capabilities to vary widely. The eigenvalue, mean, and number of arcs

indices of the structures are given in Table 1. Since the JG index is obtained using the probability

distribution of demand and service times, it changes as the CV of the demand interarrival times

or service times changes. Table A in on-line Appendix IV presents the JG indices for our test

suites. Note that those indices are for the parallel queueing environment, since the JG index does

not apply to closed serial environments. Because the 5 demand vectors and their 25 associated

structures are often very difficult to distinguish, these examples are sufficient for us to make our

point when tested under a variety of operating conditions.

5.2 Environments and Topologies in the Test Suite

Our numerical study examines the performance of our indices in two fundamentally different sto-

chastic environments: (i) the open parallel queueing environment, and (ii) the closed serial queue-
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Figure 8: Structures that Þt demand vector D5 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

ing environment. In all simulations, processing times and interarrival times were generated from a

Gamma distribution, which can accommodate any CV .

5.2.1 Open Parallel Queueing Environments

This environment is chosen to represent the many parallel operations which are demand-constrained

make-to-order systems. We think of applications such as call centers, paperwork processing in office

environments, manufacturing workstations in a job shop, etc. The demand arrival rate vector is Di,

and we used mean process times of 0.9 for all demand types to achieve an average system utilization

of 90%, which is in our experience the most practical level in many applications. Moreover, we test

shock models that allow utilization to vary in a complex way, thoroughly exercising the transient

dynamics without causing instability (see Section 5.2.4). To ensure that our results were not

dependent on 90% utilization, we repeated the parallel simulation test suite for 70% utilization (via

mean processing times of 0.7). As a widely applicable performance measure, we use average waiting

time as our metric. The structure with smaller average demand waiting time will be considered

more ßexible; however, by Little�s Law this is equivalent to minimizing average queue length.
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5.2.2 Closed Serial Queueing Environments

The closed serial queueing environment can model a production line that employs a CONWIP

release policy to limit the number of jobs (WIP) in the line. Our test examples range from lines

with 6 workstations and 6 workers to 10 of each. Each workstation requires a unique skill. Demand

vector Di denotes the average processing times. Since there is no exogenous demand process, setting

the WIP level is analogous to setting the utilization level of the open system. We tested WIP levels

corresponding to 2, 6, 10, and 14 jobs per worker. System throughput is the metric of ßexibility,

and thus systems with higher throughput will be considered more ßexible.

5.2.3 Control Policies

In both the closed serial and open parallel environment simulations, we use the �longest queue�

policy, which directs an idle source to process the demand type (within its skill set) that has the

largest number of waiting jobs. When an arrival Þnds two or more workers available, the worker that

has been idle the longest is selected. We selected the longest queue policy for several reasons. First,

the longest queue policy is one of the few policies that can be applied sensibly with any structure

and any network ßow. Second, Hopp et al. (2004a) have extensively tested a broad suite of policies

in CONWIP lines under 2 different cross-training strategies, namely �cherry-picking� and �2-skill

chaining.� Comparison to both simulations and MDP models revealed the robust effectiveness of

the longest queue rule (also called MaxQueue rule). It was found to be, on average, within 3% of

optimal in achieving throughput. Third, the longest queue policy is intuitive, easily implemented,

and widely used in industry. (See Van Houtum et al. (1997), Van Mieghem (2003), and Stolyar

(2004) and references therein for a survey of past work and a recent analysis of the longest queue

policy as well as the generalized longest queue policy.)

5.2.4 Uncertainty in the Environments of the Test Suite

Since ßexibility is the system�s ability to respond to changes in the environment, our simulation

study incorporates randomness through the following two mechanisms:

1. Variability: A major source of uncertainty is variability in service times and demand interar-

rival times. For both of these sources, our simulation study incorporates two different coefficients of

variation: CV = 1 and CV = 2. This creates four different scenarios for the parallel environment in
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which the CV for demand interarrival times and service times are all set to be 1 or 2. In the closed

(CONWIP) serial environment, it creates 2 scenarios, because there is no exogenous demand.

2. System Shocks: While variability of i.i.d. random variables models short-term ßuctuations,

the shock models force average demand arrival rates and average job processing times to change

over time. The shocks in the CONWIP line represent shifts in service capacity by adjusting mean

job processing times, while shocks in the parallel system can be thought of as either demand shifts

or, as in the serial case, processing time changes .

We simulate these systems by sequentially providing a shock of type (i, j) for i = 1 to N and for

j = 1 to N . Each shock is preceeded by an equilibrium condition (90% or 70% worker utilization in

parallel cases). A shock of type (i, j) with i %= j boosts type j demand with an absolute rate increase

of 0.075 (0.225 in the 70% utilization case) while also dropping type i by 0.075. Shocks of type

(i, i) simply boost the demand for type i by an absolute rate of 0.075 (0.225). This represents an

average shift in worker utilization of 8.3% (32%). The high-utilization shock periods generate large

queues in the open parallel case, so a long shock/equilibrium period of 5,000 jobs was appropriate.

On the other hand, the CONWIP system is tightly coupled and queues cannot exceed the WIP

level, so the shock and equilibrium periods were ended after 1,000 job completions.

5.3 The Evaluation Process

Our evaluation process is based on pairwise performance rankings of test structures that Þt a

particular demand vector Di, i = 1, 2, 3. For every pair, we used the four indices to predict the

more ßexible structure. To base our results only on signiÞcant cases, we threw out any comparisons

for which the performance outcomes (waiting time in parallel systems and throughput in CONWIP

systems) were less than 0.1% different. Clearly, the issue of predicting better performance is almost

meaningless once the environments allow two alternatives to achieve performances within 0.1%,

especially in light of the fact that these cases only occurred in serial systems in which the realized

throughput had almost achieved the capacity asymptote. This threshold also prevents us from

including cases in which the conÞdence intervals on the performance estimates are too close to

determine the ranking. If, and only if, a simulation passes the 0.1% criterion and also contradicts

the prediction of the index, we count that as a prediction error and calculate the percentage relative
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error ∆%. In the parallel environment the percent error is based on mean waiting time as follows:

∆ =
|ZSF − ZSim|

ZSim
, (1)

where ZSF is the simulated performance of the structure chosen by the index, while ZSim denotes

the truly better performance determined by simulation. Since larger throughput is more desirable

in a CONWIP line, equation (1) is modiÞed to take the percent error with respect to ZSF .

Our simulation was written in the C++ language. For models without shocks, runs typically

ended after 20,000 jobs exited the line, in addition to a warm-up period of 1,500 jobs. Each run was

replicated between 25 and 2,000 times, conÞdence intervals were computed at the 97.5% level, and

these allowed us to use the 0.1% signiÞcance threshold. With two CV levels for both interarrival

and service times and two utilization levels, we have a total of 8 regular (non-shock) scenarios

plus the same 8 scenarios under the shock model. For the serial CONWIP environment, we tested

four WIP levels at two CV levels � 16 closed serial scenarios when the regular and shock models

are combined. Each demand vector (with say n structures) has a number of possible pairwise

comparisons (n(n − 1)/2 comparisons). Since each pairwise structural comparison was tested in

these diverse operating environments (i.e., Serial, parallel, regular, shock, different variabilities,

different WIP levels, etc.) our experiment included 1585 pairwise comparisons which exceeded our

0.1% difference criterion. Note that in the worst case, the uncounted cases (whose performance

differences are insigniÞcant) do not signiÞcantly change the maximum error percentages while the

average errors would actually improve.

Tables 2 and 3 summarize the results, where the average and maximum percent errors are cal-

culated conditioned upon an error outcome. To calculate the errors in Tables 2 and 3, whenever an

index was the same for two structures, we do not count it as a ranked case (the index comparison is

indeterminate). Therefore, �% Ranked� in the tables indicates the percentage of valid comparisons

an index can distinguish. For this reason, all indices except the eigenvalue and JG indices, which

rank all cases, have less than 100% of the comparisons ranked. In this light, the error measures

must be interpreted carefully. For example, it is misleading that the number of arcs overall average

prediction rate is larger than that of the eigenvalue index, because the number of arcs index fails to

distinguish the most difficult cases (i.e., those with equal numbers of capabilities). This is because

the average prediction rate of the number of arcs index was computed over 67.13% of the valid
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comparisons, while the average prediction rate for the eigenvalue is over all (100%) of them. The

number of arcs ignores how those arcs construct a structure. In the next section, we present an

example that clearly shows a case where the number of arc index fails even when the two structures

differ in the number of arcs.

Table 2. Performance evaluation of the Eigenvalue and the Mean indices.
De- Sim. Varia Num. Eigenvalue (100% Ranked) Mean Index

mand Envi- bility Com- % Cor- Error ∆ % % Cor- Error ∆
Vec. ronment Scenario parisons rect Ave. Max. Ranked rect Ave. Max.

D1 Open Regular 48 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00%
Parallel Shocks 48 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00%
Closed Regular 45 73.33% 1.17% 2.07% 100.00% 73.33% 1.17% 2.07%
Serial Shocks 38 78.95% 0.75% 1.43% 100.00% 78.95% 0.75% 1.43%

D2 Open Regular 24 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00%
Parallel Shocks 24 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00%
Closed Regular 20 95.00% 0.57% 0.57% 100.00% 95.00% 0.57% 0.57%
Serial Shocks 20 95.00% 0.68% 0.68% 100.00% 95.00% 0.68% 0.68%

D3 Open Regular 77 96.10% 0.18% 0.21% 83.12% 100.00% 0.00% 0.00%
Parallel Shocks 78 92.31% 0.25% 0.41% 82.05% 100.00% 0.00% 0.00%
Closed Regular 53 79.25% 1.56% 4.18% 77.36% 79.25% 1.56% 4.18%
Serial Shocks 52 78.85% 1.59% 4.27% 76.92% 78.85% 1.59% 4.27%

D4 Open Regular 48 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00%
Parallel Shocks 48 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00%
Closed Regular 35 82.86% 1.62% 5.08% 100.00% 82.86% 1.62% 5.08%
Serial Shocks 35 82.86% 1.63% 5.07% 100.00% 82.86% 1.63% 5.07%

D5 Open Regular 288 89.93% 2.31% 6.32% 100.00% 89.93% 2.31% 6.32%
Parallel Shocks 286 90.21% 2.43% 6.29% 100.00% 90.21% 2.43% 6.29%
Closed Regular 159 93.08% 0.71% 1.17% 100.00% 93.08% 0.71% 1.17%
Serial Shocks 159 93.08% 0.70% 1.13% 100.00% 93.08% 0.70% 1.13%

Total 1585 90.91% 1.26% 6.32% 96.78% 91.53% 1.26% 6.32%

Although some of the test structures were very close in performance, the performances of other

structures in each environment are often signiÞcantly different. For example, for demand vector

D5, the difference between the performance of the most and the least ßexible structures is up to

111.11%. This number is 12.79%, 17.98%, 11.07%, and 26.22% for demand vectors D1, D2, D3,

and D4, respectively. We highlight several observations:
� Overall, Tables 2 and 3 show that the eigenvalue and mean indices resulted in the same average error
(given an error was made) of 1.26% and maximum error of 6.32%. They also performed exactly the
same for all demand vectors, except D3, where the mean index could not distinguish patterns 3-1 and
3-2 or 3-3 and 3-4. The eigenvalue index ranks all of the cases and achieves a 90.9% rate of correctly
ranking pairs. The mean index predicts correctly in 91.5% of the ranked cases, and 96.8% of the cases
are ranked.

� The JG index, which is restricted to parallel systems, ranks all of the pairwise comparisons and
performs the same as our eigenvalue and mean indices for Patterns D2 and D4. The JG index has
the same or worse prediction rate than the eigenvalue index for all patterns except D5. In addition,
it results in worse average and maximum errors compared with our indices. The eigenvalue and JG
indices rank 100% of the cases; however, if we compute the prediction rate of the eigenvalue index
restricted only to the parallel cases, then we Þnd its prediction rate to be 93.2%, which is close to the
95.5% rate of the JG index.
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� The number of arcs index ranked 67.1% of the tests (with a 95% prediction rate among them) with
average and maximum errors of 1.56% and 6.32%, respectively. These are good error numbers, but
they only apply to 67.1% of the tests. For these test cases, all methods perform about the same.

� The shock models represent highly dynamic environments such as those often seen in practice (e.g., new
product launches, economic boom/bust cycles, call center peak/off-peak hours, etc.) The consistent
performances of all the tested indices across regular and shock models indicates that the performance
rankings are very consistent across a variety of operating conditions. We interpret these results to
conÞrm our belief that a more ßexible structure will perform better than a less ßexible structure over
a range of environments (such as variability levels, demand/load levels, etc.)

Table 3. Performance evaluation of the Number of Arcs and JG indices.
De- Sim. Varia- Num. Number of Arcs Index J G Index (100% Ranked)
mand Envi- bility Com- % % Cor- Error ∆ % Cor- Error ∆
Vec. ronment Scenario parisons Ranked rect Avg. Max. rect Avg. Max.

D1 Open Regular 48 0.00% � � � 95.83% 3.34% 3.75%
Parallel Shocks 48 0.00% � � � 95.83% 3.43% 3.99%
Closed Regular 45 0.00% � � � N.A. N.A. N.A.
Serial Shocks 38 0.00% � � � N.A. N.A. N.A.

D2 Open Regular 24 66.66% 100.00% � � 100.00% � �
Parallel Shocks 24 66.66% 100.00% � � 100.00% � �
Closed Regular 20 70.00% 100.00% � � N.A. N.A. N.A.
Serial Shocks 20 70.00% 100.00% � � N.A. N.A. N.A.

D3 Open Regular 77 0.00% � � � 87.01% 0.44% 1.13 %
Parallel Shocks 78 0.00% � � � 85.91% 0.45% 0.98%
Closed Regular 53 0.00% � � � N.A. N.A. N.A.
Serial Shocks 52 0.00% � � � N.A. N.A. N.A.

D4 Open Regular 48 83.33% 100.00% � � 100.00% � �
Parallel Shocks 48 83.33% 100.00% � � 100.00% � �
Closed Regular 35 82.86% 100.00% � � N.A. N.A. N.A.
Serial Shocks 35 82.86% 100.00% � � N.A. N.A. N.A.

D5 Open Regular 288 97.22% 92.71% 2.09% 6.32% 96.53% 3.22% 6.98%
Parallel Shocks 286 97.20% 93.01% 2.06% 6.29% 96.85% 3.28% 7.05%
Closed Regular 159 96.86% 95.60% 0.63% 1.04% N.A. N.A. N.A.
Serial Shocks 159 96.86% 95.60% 0.63% 1.04% N.A. N.A. N.A.

Total 1585 67.13% 94.98% 1.56% 6.32% 95.46% 2.33% 7.05%

The JG index is a little more accurate than the SF indices in this test suite. However, we one

should consider that: (i) The SF indices ignore the network ßow topology and therefore applies

to both open parallel and closed serial systems, while the JG index was designed for parallel sys-

tems only. (ii) In order to obtain JG index, one needs the detailed probability distributions for

demand and capacity, while the SF indices do not use any information regarding capacity or de-

mand (provided that structures Þt their environment). (iii) The SF indices can be obtained using

a deterministic maxßow algorithm. If capacity is not deterministic and demand is not normally

distributed (as it is in Jordan and Graves [1995]), complex stochastic techniques or computer sim-

ulation is needed to calculate the JG index. Our experiments contribute further evidence of the

accurate performance of the JG index. For a parallel queueing environments, when detailed infor-

mation regarding the demand and capacity is available, and if computational effort and complexity

is not an issue, the JG index is an efficient metric.
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Figure 9: Structures 14-C and 12-C are constructed by adding 3 and 1 capabilities to the original structure.

5.4 The SF-Based Indices and the Number of Arcs Index

The number of arcs index can perform well when the alternatives differ in the number of capabilities.

The SF matrix-based indices include not only the number of arcs, but also the interconnection

structure. In general, if we compare the SF matrix of one structure with that of another and

recognize that the Þrst matrix has larger elements than another, we can immediately conclude that

the Þrst matrix has a larger eigenvalue or mean index (a generally known result in Meyer 2000).

Lemma 1 Given structural ßexibility matrices M and M ", if M ≤ M " (mij ≤ m"
ij for all i, j),

then Tei(M) ≤ Tei(M ") and Tme(M) ≤ Tme(M ").

Intuition suggests that the ßexibility of a system should increase as more capabilities are added

to the system, which is captured in the following corollary (the proof of this and other technical

results can be found in Appendix I). �

Corollary 1 If a capability (arc) is added to a given structure, the structural ßexibility indices,

Iei(M), and Ime(M) are non-decreasing.

Although the SF indices recognize the beneÞts of having more capabilities, it is also true that

a structure with more capabilities can sometimes have a lower ßexibility than another one with

fewer capabilities. Figure 9 shows two structures with 14 and 12 capabilities which are created by

adding 3 and 1 new capabilities, respectively, to an original structure. As can be seen in the Þgure:

(i) structure 14-C has two more capabilities than 12-C, (ii) each source node in 14-C has at least

as many capabilities as the corresponding node in 12-C, and (iii) each demand node in 14-C is

assigned to at least as many source nodes as the corresponding node in the 12-C.

Structure 14-C dominates structure 12-C with respect to all three of the above features, so

it seems intuitive that 14-C would be more ßexible. However, both SF-based indices conclude
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that structure 12-C is more ßexible than 14-C (e.g., eigenvalue indices are Iei(M12−C) = 12 and

Iei(M14−C) = 8.34; while Ime(M12−C) = 2 and Ime(M14−C) = 1.39). To check its validity,

we compared their performances in the open parallel and closed serial environments. In both

environments 14-C outperformed 12-C in all cases tested (CV �s equal to 1 and 2, and CONWIP

WIP levels of 12, 36, 60, and 84), which was what both indices correctly predicted. This illustrates

the fact that system architecture is important, so it is insufficient to determine ßexibility based

only upon (i) the number of capabilities of each source, (ii) the number of sources that cover a

demand, or (iii) the total number of capabilities in the system.

5.5 D-Skill Chaining Structures

The chain structure in parallel systems (see Figure 1(C) and Structure 12-C of Figure 9 for exam-

ples) is analyzed and highlighted in Jordan and Graves (1995), Gurumurthi and Benjaafar (2001),

and Sheikhzadeh et al. (1998), while Hopp et al. (2004a) emphasize chains in serial lines (see Figure

2(C)). Complementary to this earlier work, we devote this section to developing a deeper under-

standing of chain structures (which we call D-skill chaining) and their characteristics. While a

formal deÞnition is found in Appendix V, the structure is easily grasped by look at the examples in

Figure 8 of chains with D = 2 (Structure 5-1), D = 3 (Structure 5-4), and D = 4 (Structure 5-7).

Theorem 1 shows that the D-skill chain generates the maximum eigenvalue and mean indices for

systems with a total of DN capabilities. To prove the theorem, we require the following lemma.

Lemma 2 The structural ßexibility matrix of the D-skill chain has value D in every element.

Theorem 1 In the class of structures with N demand types, N sources, and DN arcs, the D-skill

chain achieves the maximum attainable eigenvalue index of DN , and mean index of D, for D ≥ 2.

It is a matter of practical importance to understand what value of D is needed for D-skill

chaining to Þt a particular demand environment, and we refer the reader to online Appendix V

for a mathematical programming deÞnition of the problem and an analytically described search

procedure to easily Þnd D.

5.6 Completing The Chain

Hopp et al. (2004a) used Markov decision processes and simulation to demonstrate a surprising

performance beneÞt in N -station serial CONWIP lines when the last capability, number 2N , com-
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Figure 10: Left: The process of skill addition, Right: The effect of skill addition on ßexibility indices.

pletes a 2-skill chain. We constructed the following experiment in order to: (i) extend their work to

parallel systems, and (ii) show that the SF indices can recognize the effect of the chain-completing

skill on system�s performance (ßexibility).

Our experiment starts with a specialist structure with N = K = 6. In each step we add one

capability toward a chain (see Figure 10-Left). From Hopp et al. (2004a), we learned that the

effect of completing the chain is maximized in a balanced line and minimized by the presence of

a sharp bottleneck. To create a modest and practical case, we set the workload rate at station

one 20% higher than the others, which are all equal. In addition, the most conservative way

to add capabilities toward a chain structure to avoid exaggerating the beneÞt is in the order

(S2,D1), (S3,D2), . . . , (S1,DN), (S3, D1), (S4,D2), as shown in Figure 10-Left.

Figure 10-Right shows how the four ßexibility indices move in the direction of increased ßex-

ibility when an additional skill is added. For structures in Figure 10-Left we simulated the open

parallel and closed serial environments under a variety of arrival and service process variabilities.

As Figure 11 shows, the performance of both parallel and serial environments is very consistent

with the behavior of our SF-based indices at every step, but not the number of arcs index. In

particular, as the eigenvalue, mean, and JG indices predict, a signiÞcant improvement in system

performance occurs in step 6 in both parallel (Figure 11-Left) and serial (shown in Figure 11-Right

with a CV of 1 for comparison) environments. This is due to the addition of the chain-completing

skill, which has been shown to have a signiÞcant effect on system performance.
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6 Conclusion

In this paper, we have presented the structural ßexibility method, a new methodology for assessing

ßexibility in production and service systems in the face of variability. We have devised the structural

ßexibility method to use a max ßow algorithm to create a structural ßexibility matrix. We have

shown that with almost equal effectiveness the mean and eigenvalue indices, which are extracted

from our structural ßexibility matrix, capture important information about a structure and how

well it can respond to variability.

Our experiments suggest that the structural ßexibility indices are a good step towards evaluating

the ßexibility of alternative structures. The structural ßexibility indices are purely deterministic

metrics obtained independently of the topology of the system (i.e., open-parallel or closed-serial)

and its variability. Nevertheless, our numerical studies suggest that when the Þrst order capacity

issues are resolved (i.e., capacity is balanced), the structural ßexibility indices are powerful in

predicting system performance rankings at different demand arrival or service process variability

levels and shock conditions. Moreover, we have identiÞed the striking ability of the structural

ßexibility indices to rank systems both in parallel as well as serial environments. This conÞrms

our assertion that the contribution of a structure to ßexibility depends very little on whether the

environment is parallel or serial.

We summarize some of the managerial insights to the questions posed in the introduction.

1. For cross-training applications, we learned that it is not sufficient for a company to provide

good access to training. System structure has a major impact on ßexibility, and the detailed
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structure is important. We have demonstrated that systems with fewer capabilities may

outperform systems with more. We have shown how and why the structure of capabilities

contributes to the robustness of a system�s performance. The structural ßexibility approach

identiÞes structures that provide superior performance.

2. It appears very promising that simple algorithms can generate indices such as the eigenvalue

or mean index to guide the decision of how to invest in ßexibility at the strategic level in

the absence of precise information. Intuitive and commonly used metrics such as number of

capabilities may not lead to a good decision regarding the system structure. Furthermore,

in many cases, restrictions such as a limited cross-training/ßexibility budget limits the set of

choices to structures that have the same number of capabilities. Under these circumstances,

intuitive metrics such as number of arcs cannot distinguish between these choices.

3. Our experience simulating many systems and the analytical result of Theorem 1 indicate

that using multi-functionality to connect structures is very beneÞcial to ßexibility and adding

a capability increases ßexibility. In addition, the SF indices and our simulations conÞrm

that a chain structure is a powerful form of cross-training from the perspective of ßexibility,

assuming the structure Þts the environment. These insights further support and strengthen

the work of Jordan and Graves (1995), Gurumurthi and Benjaafar (2001), and Hopp et al.

(2004a), who have pointed out the power of the 2-skill chaining structure. Moreover, the SF

indices agree with and augment the evidence of the importance of �completing the chain�.

This initial success warrants further research to (i) attempt to extract more information from

the structural ßexibility matrix, and (ii) generate a more robust ranking approach that will compare

systems with a richer description. For example, it is important to investigate how to move beyond

the structural approach to a method that treats sources with different speeds. It would also be

useful to address cases in which only a part of a team of cross-trained workers are trained for a

new capability. Capacitated methods can help address the conjecture that an extra skill at a high

capacity source is worth much more than at a low-capacity source.
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